Metamath Proof Explorer


Theorem relogbexp

Description: Identity law for general logarithm: the logarithm of a power to the base is the exponent. Property 6 of Cohen4 p. 361. (Contributed by Stefan O'Rear, 19-Sep-2014) (Revised by AV, 9-Jun-2020)

Ref Expression
Assertion relogbexp B+B1MlogBBM=M

Proof

Step Hyp Ref Expression
1 rpcn B+B
2 1 adantr B+B1B
3 rpne0 B+B0
4 3 adantr B+B1B0
5 simpr B+B1B1
6 2 4 5 3jca B+B1BB0B1
7 eldifpr B01BB0B1
8 6 7 sylibr B+B1B01
9 relogbzexp B01B+MlogBBM=MlogBB
10 8 9 stoic4a B+B1MlogBBM=MlogBB
11 6 3adant3 B+B1MBB0B1
12 logbid1 BB0B1logBB=1
13 11 12 syl B+B1MlogBB=1
14 13 oveq2d B+B1MMlogBB= M1
15 zcn MM
16 15 3ad2ant3 B+B1MM
17 16 mulridd B+B1M M1=M
18 10 14 17 3eqtrd B+B1MlogBBM=M