Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | relopabi.1 | |
|
Assertion | relopabi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relopabi.1 | |
|
2 | df-opab | |
|
3 | 1 2 | eqtri | |
4 | 3 | eqabri | |
5 | simpl | |
|
6 | 5 | 2eximi | |
7 | 4 6 | sylbi | |
8 | ax6evr | |
|
9 | pm3.21 | |
|
10 | 9 | eximdv | |
11 | 8 10 | mpi | |
12 | opeq2 | |
|
13 | eqtr2 | |
|
14 | 13 | eqcomd | |
15 | 12 14 | sylan | |
16 | 15 | eximi | |
17 | 11 16 | syl | |
18 | 17 | eqcoms | |
19 | 18 | 2eximi | |
20 | excomim | |
|
21 | 19 20 | syl | |
22 | vex | |
|
23 | vex | |
|
24 | 22 23 | pm3.2i | |
25 | 24 | jctr | |
26 | 25 | 2eximi | |
27 | df-xp | |
|
28 | df-opab | |
|
29 | 27 28 | eqtri | |
30 | 29 | eqabri | |
31 | 26 30 | sylibr | |
32 | 31 | eximi | |
33 | 7 21 32 | 3syl | |
34 | ax5e | |
|
35 | 33 34 | syl | |
36 | 35 | ssriv | |
37 | df-rel | |
|
38 | 36 37 | mpbir | |