Metamath Proof Explorer


Theorem relopabi

Description: A class of ordered pairs is a relation. (Contributed by Mario Carneiro, 21-Dec-2013) Remove dependency on ax-sep , ax-nul , ax-pr . (Revised by KP, 25-Oct-2021)

Ref Expression
Hypothesis relopabi.1 A=xy|φ
Assertion relopabi RelA

Proof

Step Hyp Ref Expression
1 relopabi.1 A=xy|φ
2 df-opab xy|φ=z|xyz=xyφ
3 1 2 eqtri A=z|xyz=xyφ
4 3 eqabri zAxyz=xyφ
5 simpl z=xyφz=xy
6 5 2eximi xyz=xyφxyz=xy
7 4 6 sylbi zAxyz=xy
8 ax6evr uy=u
9 pm3.21 xy=zy=uy=uxy=z
10 9 eximdv xy=zuy=uuy=uxy=z
11 8 10 mpi xy=zuy=uxy=z
12 opeq2 y=uxy=xu
13 eqtr2 xy=xuxy=zxu=z
14 13 eqcomd xy=xuxy=zz=xu
15 12 14 sylan y=uxy=zz=xu
16 15 eximi uy=uxy=zuz=xu
17 11 16 syl xy=zuz=xu
18 17 eqcoms z=xyuz=xu
19 18 2eximi xyz=xyxyuz=xu
20 excomim xyuz=xuyxuz=xu
21 19 20 syl xyz=xyyxuz=xu
22 vex xV
23 vex uV
24 22 23 pm3.2i xVuV
25 24 jctr z=xuz=xuxVuV
26 25 2eximi xuz=xuxuz=xuxVuV
27 df-xp V×V=xu|xVuV
28 df-opab xu|xVuV=z|xuz=xuxVuV
29 27 28 eqtri V×V=z|xuz=xuxVuV
30 29 eqabri zV×Vxuz=xuxVuV
31 26 30 sylibr xuz=xuzV×V
32 31 eximi yxuz=xuyzV×V
33 7 21 32 3syl zAyzV×V
34 ax5e yzV×VzV×V
35 33 34 syl zAzV×V
36 35 ssriv AV×V
37 df-rel RelAAV×V
38 36 37 mpbir RelA