Description: mulcan2d for real numbers using fewer axioms. (Contributed by Steven Nguyen, 15-Apr-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | remulcan2d.1 | |
|
remulcan2d.2 | |
||
remulcan2d.3 | |
||
remulcan2d.4 | |
||
Assertion | remulcan2d | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | remulcan2d.1 | |
|
2 | remulcan2d.2 | |
|
3 | remulcan2d.3 | |
|
4 | remulcan2d.4 | |
|
5 | ax-rrecex | |
|
6 | 3 4 5 | syl2anc | |
7 | oveq1 | |
|
8 | 1 | adantr | |
9 | 8 | recnd | |
10 | 3 | adantr | |
11 | 10 | recnd | |
12 | simprl | |
|
13 | 12 | recnd | |
14 | 9 11 13 | mulassd | |
15 | simprr | |
|
16 | 15 | oveq2d | |
17 | ax-1rid | |
|
18 | 8 17 | syl | |
19 | 14 16 18 | 3eqtrd | |
20 | 2 | adantr | |
21 | 20 | recnd | |
22 | 21 11 13 | mulassd | |
23 | 15 | oveq2d | |
24 | ax-1rid | |
|
25 | 20 24 | syl | |
26 | 22 23 25 | 3eqtrd | |
27 | 19 26 | eqeq12d | |
28 | 7 27 | imbitrid | |
29 | 6 28 | rexlimddv | |
30 | oveq1 | |
|
31 | 29 30 | impbid1 | |