Metamath Proof Explorer


Theorem remulcan2d

Description: mulcan2d for real numbers using fewer axioms. (Contributed by Steven Nguyen, 15-Apr-2023)

Ref Expression
Hypotheses remulcan2d.1 φA
remulcan2d.2 φB
remulcan2d.3 φC
remulcan2d.4 φC0
Assertion remulcan2d φAC=BCA=B

Proof

Step Hyp Ref Expression
1 remulcan2d.1 φA
2 remulcan2d.2 φB
3 remulcan2d.3 φC
4 remulcan2d.4 φC0
5 ax-rrecex CC0xCx=1
6 3 4 5 syl2anc φxCx=1
7 oveq1 AC=BCACx=BCx
8 1 adantr φxCx=1A
9 8 recnd φxCx=1A
10 3 adantr φxCx=1C
11 10 recnd φxCx=1C
12 simprl φxCx=1x
13 12 recnd φxCx=1x
14 9 11 13 mulassd φxCx=1ACx=ACx
15 simprr φxCx=1Cx=1
16 15 oveq2d φxCx=1ACx=A1
17 ax-1rid AA1=A
18 8 17 syl φxCx=1A1=A
19 14 16 18 3eqtrd φxCx=1ACx=A
20 2 adantr φxCx=1B
21 20 recnd φxCx=1B
22 21 11 13 mulassd φxCx=1BCx=BCx
23 15 oveq2d φxCx=1BCx=B1
24 ax-1rid BB1=B
25 20 24 syl φxCx=1B1=B
26 22 23 25 3eqtrd φxCx=1BCx=B
27 19 26 eqeq12d φxCx=1ACx=BCxA=B
28 7 27 imbitrid φxCx=1AC=BCA=B
29 6 28 rexlimddv φAC=BCA=B
30 oveq1 A=BAC=BC
31 29 30 impbid1 φAC=BCA=B