Metamath Proof Explorer


Theorem remulg

Description: The multiplication (group power) operation of the group of reals. (Contributed by Thierry Arnoux, 1-Nov-2017)

Ref Expression
Assertion remulg NANfldA=NA

Proof

Step Hyp Ref Expression
1 recn xx
2 readdcl xyx+y
3 renegcl xx
4 1re 1
5 1 2 3 4 cnsubglem SubGrpfld
6 eqid fld=fld
7 df-refld fld=fld𝑠
8 eqid fld=fld
9 6 7 8 subgmulg SubGrpfldNANfldA=NfldA
10 5 9 mp3an1 NANfldA=NfldA
11 simpr NAA
12 11 recnd NAA
13 cnfldmulg NANfldA=NA
14 12 13 syldan NANfldA=NA
15 10 14 eqtr3d NANfldA=NA