Metamath Proof Explorer


Theorem repsco

Description: Mapping of words commutes with the "repeated symbol" operation. (Contributed by AV, 11-Nov-2018)

Ref Expression
Assertion repsco SAN0F:ABFSrepeatSN=FSrepeatSN

Proof

Step Hyp Ref Expression
1 simpl1 SAN0F:ABx0..^NSA
2 simpl2 SAN0F:ABx0..^NN0
3 simpr SAN0F:ABx0..^Nx0..^N
4 repswsymb SAN0x0..^NSrepeatSNx=S
5 1 2 3 4 syl3anc SAN0F:ABx0..^NSrepeatSNx=S
6 5 fveq2d SAN0F:ABx0..^NFSrepeatSNx=FS
7 6 mpteq2dva SAN0F:ABx0..^NFSrepeatSNx=x0..^NFS
8 simp3 SAN0F:ABF:AB
9 repsf SAN0SrepeatSN:0..^NA
10 9 3adant3 SAN0F:ABSrepeatSN:0..^NA
11 fcompt F:ABSrepeatSN:0..^NAFSrepeatSN=x0..^NFSrepeatSNx
12 8 10 11 syl2anc SAN0F:ABFSrepeatSN=x0..^NFSrepeatSNx
13 fvexd SAFSV
14 13 anim1i SAN0FSVN0
15 14 3adant3 SAN0F:ABFSVN0
16 reps FSVN0FSrepeatSN=x0..^NFS
17 15 16 syl SAN0F:ABFSrepeatSN=x0..^NFS
18 7 12 17 3eqtr4d SAN0F:ABFSrepeatSN=FSrepeatSN