Metamath Proof Explorer


Theorem rescfth

Description: The inclusion functor from a subcategory is a faithful functor. (Contributed by Mario Carneiro, 27-Jan-2017)

Ref Expression
Hypotheses rescfth.d D=CcatJ
rescfth.i I=idfuncD
Assertion rescfth JSubcatCIDFaithC

Proof

Step Hyp Ref Expression
1 rescfth.d D=CcatJ
2 rescfth.i I=idfuncD
3 1 oveq2i DFaithD=DFaithCcatJ
4 fthres2 JSubcatCDFaithCcatJDFaithC
5 3 4 eqsstrid JSubcatCDFaithDDFaithC
6 id JSubcatCJSubcatC
7 1 6 subccat JSubcatCDCat
8 2 idffth DCatIDFullDDFaithD
9 7 8 syl JSubcatCIDFullDDFaithD
10 9 elin2d JSubcatCIDFaithD
11 5 10 sseldd JSubcatCIDFaithC