Metamath Proof Explorer


Theorem rescnvimafod

Description: The restriction of a function to a preimage of a class is a function onto the intersection of this class and the range of the function. (Contributed by AV, 13-Sep-2024) (Revised by AV, 29-Sep-2024)

Ref Expression
Hypotheses rescnvimafod.f φFFnA
rescnvimafod.e φE=ranFB
rescnvimafod.d φD=F-1B
Assertion rescnvimafod φFD:DontoE

Proof

Step Hyp Ref Expression
1 rescnvimafod.f φFFnA
2 rescnvimafod.e φE=ranFB
3 rescnvimafod.d φD=F-1B
4 cnvimass F-1BdomF
5 4 a1i φF-1BdomF
6 1 fndmd φdomF=A
7 6 eqcomd φA=domF
8 5 3 7 3sstr4d φDA
9 1 8 fnssresd φFDFnD
10 df-ima FD=ranFD
11 3 imaeq2d φFD=FF-1B
12 fnfun FFnAFunF
13 funimacnv FunFFF-1B=BranF
14 1 12 13 3syl φFF-1B=BranF
15 incom BranF=ranFB
16 15 a1i φBranF=ranFB
17 11 14 16 3eqtrd φFD=ranFB
18 10 17 eqtr3id φranFD=ranFB
19 18 2 eqtr4d φranFD=E
20 df-fo FD:DontoEFDFnDranFD=E
21 9 19 20 sylanbrc φFD:DontoE