Metamath Proof Explorer


Theorem rescval2

Description: Value of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017)

Ref Expression
Hypotheses rescval.1 D=CcatH
rescval2.1 φCV
rescval2.2 φSW
rescval2.3 φHFnS×S
Assertion rescval2 φD=C𝑠SsSetHomndxH

Proof

Step Hyp Ref Expression
1 rescval.1 D=CcatH
2 rescval2.1 φCV
3 rescval2.2 φSW
4 rescval2.3 φHFnS×S
5 3 3 xpexd φS×SV
6 fnex HFnS×SS×SVHV
7 4 5 6 syl2anc φHV
8 1 rescval CVHVD=C𝑠domdomHsSetHomndxH
9 2 7 8 syl2anc φD=C𝑠domdomHsSetHomndxH
10 4 fndmd φdomH=S×S
11 10 dmeqd φdomdomH=domS×S
12 dmxpid domS×S=S
13 11 12 eqtrdi φdomdomH=S
14 13 oveq2d φC𝑠domdomH=C𝑠S
15 14 oveq1d φC𝑠domdomHsSetHomndxH=C𝑠SsSetHomndxH
16 9 15 eqtrd φD=C𝑠SsSetHomndxH