Metamath Proof Explorer


Theorem resfifsupp

Description: The restriction of a function to a finite set is finitely supported. (Contributed by AV, 12-Dec-2019)

Ref Expression
Hypotheses resfifsupp.f φFunF
resfifsupp.x φXFin
resfifsupp.z φZV
Assertion resfifsupp φfinSuppZFX

Proof

Step Hyp Ref Expression
1 resfifsupp.f φFunF
2 resfifsupp.x φXFin
3 resfifsupp.z φZV
4 funrel FunFRelF
5 1 4 syl φRelF
6 resindm RelFFXdomF=FX
7 5 6 syl φFXdomF=FX
8 1 funfnd φFFndomF
9 fnresin2 FFndomFFXdomFFnXdomF
10 8 9 syl φFXdomFFnXdomF
11 infi XFinXdomFFin
12 2 11 syl φXdomFFin
13 10 12 3 fndmfifsupp φfinSuppZFXdomF
14 7 13 eqbrtrrd φfinSuppZFX