Metamath Proof Explorer


Theorem resoprab2

Description: Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009)

Ref Expression
Assertion resoprab2 CADBxyz|xAyBφC×D=xyz|xCyDφ

Proof

Step Hyp Ref Expression
1 resoprab xyz|xAyBφC×D=xyz|xCyDxAyBφ
2 anass xCyDxAyBφxCyDxAyBφ
3 an4 xCyDxAyBxCxAyDyB
4 ssel CAxCxA
5 4 pm4.71d CAxCxCxA
6 5 bicomd CAxCxAxC
7 ssel DByDyB
8 7 pm4.71d DByDyDyB
9 8 bicomd DByDyByD
10 6 9 bi2anan9 CADBxCxAyDyBxCyD
11 3 10 bitrid CADBxCyDxAyBxCyD
12 11 anbi1d CADBxCyDxAyBφxCyDφ
13 2 12 bitr3id CADBxCyDxAyBφxCyDφ
14 13 oprabbidv CADBxyz|xCyDxAyBφ=xyz|xCyDφ
15 1 14 eqtrid CADBxyz|xAyBφC×D=xyz|xCyDφ