Metamath Proof Explorer


Theorem resqrtvalex

Description: Example for resqrtval . (Contributed by RP, 21-May-2024)

Ref Expression
Assertion resqrtvalex 15+i8=4

Proof

Step Hyp Ref Expression
1 1nn0 10
2 5nn0 50
3 1 2 deccl 150
4 3 nn0cni 15
5 ax-icn i
6 8cn 8
7 5 6 mulcli i8
8 4 7 addcli 15+i8
9 resqrtval 15+i815+i8=15+i8+15+i82
10 8 9 ax-mp 15+i8=15+i8+15+i82
11 7nn0 70
12 3 nn0rei 15
13 8re 8
14 absreim 15815+i8=152+82
15 12 13 14 mp2an 15+i8=152+82
16 4 sqvali 152=1515
17 eqid 15=15
18 4 mullidi 115=15
19 1p1e2 1+1=2
20 2nn0 20
21 11 nn0cni 7
22 2 nn0cni 5
23 7p5e12 7+5=12
24 21 22 23 addcomli 5+7=12
25 1 2 11 18 19 20 24 decaddci 115+7=22
26 22 mulridi 51=5
27 26 oveq1i 51+2=5+2
28 5p2e7 5+2=7
29 27 28 eqtri 51+2=7
30 5t5e25 55=25
31 2 1 2 17 2 20 29 30 decmul2c 515=75
32 3 1 2 17 2 11 25 31 decmul1c 1515=225
33 16 32 eqtri 152=225
34 6 sqvali 82=88
35 8t8e64 88=64
36 34 35 eqtri 82=64
37 33 36 oveq12i 152+82=225+64
38 20 20 deccl 220
39 6nn0 60
40 4nn0 40
41 eqid 225=225
42 eqid 64=64
43 eqid 22=22
44 39 nn0cni 6
45 2cn 2
46 6p2e8 6+2=8
47 44 45 46 addcomli 2+6=8
48 20 20 39 43 47 decaddi 22+6=28
49 5p4e9 5+4=9
50 38 2 39 40 41 42 48 49 decadd 225+64=289
51 1 11 deccl 170
52 51 nn0cni 17
53 52 sqvali 172=1717
54 eqid 17=17
55 9nn0 90
56 1 1 deccl 110
57 52 mullidi 117=17
58 eqid 11=11
59 7p1e8 7+1=8
60 1 11 1 1 57 58 19 59 decadd 117+11=28
61 21 mulridi 71=7
62 61 oveq1i 71+4=7+4
63 7p4e11 7+4=11
64 62 63 eqtri 71+4=11
65 7t7e49 77=49
66 11 1 11 54 55 40 64 65 decmul2c 717=119
67 51 1 11 54 55 56 60 66 decmul1c 1717=289
68 53 67 eqtr2i 289=172
69 37 50 68 3eqtri 152+82=172
70 69 fveq2i 152+82=172
71 51 nn0ge0i 017
72 51 nn0rei 17
73 72 sqrtsqi 017172=17
74 71 73 ax-mp 172=17
75 15 70 74 3eqtri 15+i8=17
76 12 13 crrei 15+i8=15
77 19 oveq1i 1+1+1=2+1
78 2p1e3 2+1=3
79 77 78 eqtri 1+1+1=3
80 1 11 1 2 75 76 79 20 23 decaddc 15+i8+15+i8=32
81 80 oveq1i 15+i8+15+i82=322
82 eqid 16=16
83 45 mulridi 21=2
84 83 oveq1i 21+1=2+1
85 84 78 eqtri 21+1=3
86 6t2e12 62=12
87 44 45 86 mulcomli 26=12
88 20 1 39 82 20 1 85 87 decmul2c 216=32
89 3nn0 30
90 89 20 deccl 320
91 90 nn0cni 32
92 1 39 deccl 160
93 92 nn0cni 16
94 2ne0 20
95 91 45 93 94 divmuli 322=16216=32
96 88 95 mpbir 322=16
97 40 nn0cni 4
98 97 sqvali 42=44
99 4t4e16 44=16
100 98 99 eqtr2i 16=42
101 81 96 100 3eqtri 15+i8+15+i82=42
102 101 fveq2i 15+i8+15+i82=42
103 40 nn0ge0i 04
104 40 nn0rei 4
105 104 sqrtsqi 0442=4
106 103 105 ax-mp 42=4
107 10 102 106 3eqtri 15+i8=4