Metamath Proof Explorer


Theorem resscat

Description: A category restricted to a smaller set of objects is a category. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion resscat CCatSVC𝑠SCat

Proof

Step Hyp Ref Expression
1 eqid BaseC=BaseC
2 1 ressinbas SVC𝑠S=C𝑠SBaseC
3 2 adantl CCatSVC𝑠S=C𝑠SBaseC
4 eqid CcatHom𝑓CSBaseC×SBaseC=CcatHom𝑓CSBaseC×SBaseC
5 eqid Hom𝑓C=Hom𝑓C
6 simpl CCatSVCCat
7 inss2 SBaseCBaseC
8 7 a1i CCatSVSBaseCBaseC
9 1 5 6 8 fullsubc CCatSVHom𝑓CSBaseC×SBaseCSubcatC
10 4 9 subccat CCatSVCcatHom𝑓CSBaseC×SBaseCCat
11 eqid C𝑠SBaseC=C𝑠SBaseC
12 1 5 6 8 11 4 fullresc CCatSVHom𝑓C𝑠SBaseC=Hom𝑓CcatHom𝑓CSBaseC×SBaseCcomp𝑓C𝑠SBaseC=comp𝑓CcatHom𝑓CSBaseC×SBaseC
13 12 simpld CCatSVHom𝑓C𝑠SBaseC=Hom𝑓CcatHom𝑓CSBaseC×SBaseC
14 12 simprd CCatSVcomp𝑓C𝑠SBaseC=comp𝑓CcatHom𝑓CSBaseC×SBaseC
15 ovexd CCatSVC𝑠SBaseCV
16 13 14 15 10 catpropd CCatSVC𝑠SBaseCCatCcatHom𝑓CSBaseC×SBaseCCat
17 10 16 mpbird CCatSVC𝑠SBaseCCat
18 3 17 eqeltrd CCatSVC𝑠SCat