Metamath Proof Explorer


Theorem resslemOLD

Description: Obsolete version of resseqnbas as of 21-Oct-2024. (Contributed by Mario Carneiro, 26-Nov-2014) (Revised by Mario Carneiro, 2-Dec-2014) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses resslemOLD.r R=W𝑠A
resslemOLD.e C=EW
resslemOLD.f E=SlotN
resslemOLD.n N
resslemOLD.b 1<N
Assertion resslemOLD AVC=ER

Proof

Step Hyp Ref Expression
1 resslemOLD.r R=W𝑠A
2 resslemOLD.e C=EW
3 resslemOLD.f E=SlotN
4 resslemOLD.n N
5 resslemOLD.b 1<N
6 eqid BaseW=BaseW
7 1 6 ressid2 BaseWAWVAVR=W
8 7 fveq2d BaseWAWVAVER=EW
9 8 3expib BaseWAWVAVER=EW
10 1 6 ressval2 ¬BaseWAWVAVR=WsSetBasendxABaseW
11 10 fveq2d ¬BaseWAWVAVER=EWsSetBasendxABaseW
12 3 4 ndxid E=SlotEndx
13 3 4 ndxarg Endx=N
14 1re 1
15 14 5 gtneii N1
16 13 15 eqnetri Endx1
17 basendx Basendx=1
18 16 17 neeqtrri EndxBasendx
19 12 18 setsnid EW=EWsSetBasendxABaseW
20 11 19 eqtr4di ¬BaseWAWVAVER=EW
21 20 3expib ¬BaseWAWVAVER=EW
22 9 21 pm2.61i WVAVER=EW
23 reldmress Reldom𝑠
24 23 ovprc1 ¬WVW𝑠A=
25 1 24 eqtrid ¬WVR=
26 25 fveq2d ¬WVER=E
27 3 str0 =E
28 26 27 eqtr4di ¬WVER=
29 fvprc ¬WVEW=
30 28 29 eqtr4d ¬WVER=EW
31 30 adantr ¬WVAVER=EW
32 22 31 pm2.61ian AVER=EW
33 2 32 eqtr4id AVC=ER