Metamath Proof Explorer


Theorem restin

Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013)

Ref Expression
Hypothesis restin.1 X=J
Assertion restin JVAWJ𝑡A=J𝑡AX

Proof

Step Hyp Ref Expression
1 restin.1 X=J
2 uniexg JVJV
3 1 2 eqeltrid JVXV
4 3 adantr JVAWXV
5 restco JVXVAWJ𝑡X𝑡A=J𝑡XA
6 5 3com23 JVAWXVJ𝑡X𝑡A=J𝑡XA
7 4 6 mpd3an3 JVAWJ𝑡X𝑡A=J𝑡XA
8 1 restid JVJ𝑡X=J
9 8 adantr JVAWJ𝑡X=J
10 9 oveq1d JVAWJ𝑡X𝑡A=J𝑡A
11 incom XA=AX
12 11 oveq2i J𝑡XA=J𝑡AX
13 12 a1i JVAWJ𝑡XA=J𝑡AX
14 7 10 13 3eqtr3d JVAWJ𝑡A=J𝑡AX