Description: When the subspace region is not a subset of the base of the topology, the resulting set is the same as the subspace restricted to the base. (Contributed by Mario Carneiro, 15-Dec-2013)
Ref | Expression | ||
---|---|---|---|
Hypothesis | restin.1 | |
|
Assertion | restin | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restin.1 | |
|
2 | uniexg | |
|
3 | 1 2 | eqeltrid | |
4 | 3 | adantr | |
5 | restco | |
|
6 | 5 | 3com23 | |
7 | 4 6 | mpd3an3 | |
8 | 1 | restid | |
9 | 8 | adantr | |
10 | 9 | oveq1d | |
11 | incom | |
|
12 | 11 | oveq2i | |
13 | 12 | a1i | |
14 | 7 10 13 | 3eqtr3d | |