Metamath Proof Explorer


Theorem resv1r

Description: 1r is unaffected by scalar restriction. (Contributed by Thierry Arnoux, 6-Sep-2018)

Ref Expression
Hypotheses resvbas.1 H=G𝑣A
resv1r.2 1˙=1G
Assertion resv1r AV1˙=1H

Proof

Step Hyp Ref Expression
1 resvbas.1 H=G𝑣A
2 resv1r.2 1˙=1G
3 eqid BaseG=BaseG
4 1 3 resvbas AVBaseG=BaseH
5 4 eleq2d AVeBaseGeBaseH
6 eqid G=G
7 1 6 resvmulr AVG=H
8 7 oveqd AVeGx=eHx
9 8 eqeq1d AVeGx=xeHx=x
10 7 oveqd AVxGe=xHe
11 10 eqeq1d AVxGe=xxHe=x
12 9 11 anbi12d AVeGx=xxGe=xeHx=xxHe=x
13 4 12 raleqbidv AVxBaseGeGx=xxGe=xxBaseHeHx=xxHe=x
14 5 13 anbi12d AVeBaseGxBaseGeGx=xxGe=xeBaseHxBaseHeHx=xxHe=x
15 14 iotabidv AVιe|eBaseGxBaseGeGx=xxGe=x=ιe|eBaseHxBaseHeHx=xxHe=x
16 3 6 2 dfur2 1˙=ιe|eBaseGxBaseGeGx=xxGe=x
17 eqid BaseH=BaseH
18 eqid H=H
19 eqid 1H=1H
20 17 18 19 dfur2 1H=ιe|eBaseHxBaseHeHx=xxHe=x
21 15 16 20 3eqtr4g AV1˙=1H