Metamath Proof Explorer


Theorem ring2idlqus1

Description: If a non-unital ring has a (two-sided) ideal which is unital, and the quotient of the ring and the ideal is also unital, then the ring is also unital with a ring unity which can be constructed from the ring unity of the ideal and a representative of the ring unity of the quotient. (Contributed by AV, 17-Mar-2025)

Ref Expression
Hypotheses ring2idlqus1.t · ˙ = R
ring2idlqus1.1 1 ˙ = 1 R 𝑠 I
ring2idlqus1.m - ˙ = - R
ring2idlqus1.a + ˙ = + R
Assertion ring2idlqus1 R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I R Ring 1 R = U - ˙ 1 ˙ · ˙ U + ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 ring2idlqus1.t · ˙ = R
2 ring2idlqus1.1 1 ˙ = 1 R 𝑠 I
3 ring2idlqus1.m - ˙ = - R
4 ring2idlqus1.a + ˙ = + R
5 simpr R 𝑠 I Ring R / 𝑠 R ~ QG I Ring R / 𝑠 R ~ QG I Ring
6 5 adantl R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring R / 𝑠 R ~ QG I Ring
7 6 ancli R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring R / 𝑠 R ~ QG I Ring
8 7 3adant3 R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring R / 𝑠 R ~ QG I Ring
9 simpl R Rng I 2Ideal R R Rng
10 9 adantr R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring R Rng
11 simpr R Rng I 2Ideal R I 2Ideal R
12 11 adantr R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring I 2Ideal R
13 eqid R 𝑠 I = R 𝑠 I
14 simpl R 𝑠 I Ring R / 𝑠 R ~ QG I Ring R 𝑠 I Ring
15 14 adantl R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring R 𝑠 I Ring
16 eqid R / 𝑠 R ~ QG I = R / 𝑠 R ~ QG I
17 10 12 13 15 16 rngringbdlem2 R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring R / 𝑠 R ~ QG I Ring R Ring
18 8 17 syl R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I R Ring
19 9 3ad2ant1 R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I R Rng
20 11 3ad2ant1 R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I I 2Ideal R
21 simp2l R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I R 𝑠 I Ring
22 eqid Base R = Base R
23 eqid R ~ QG I = R ~ QG I
24 6 3adant3 R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I R / 𝑠 R ~ QG I Ring
25 simp3 R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I U 1 R / 𝑠 R ~ QG I
26 eqid U - ˙ 1 ˙ · ˙ U + ˙ 1 ˙ = U - ˙ 1 ˙ · ˙ U + ˙ 1 ˙
27 19 20 13 21 22 1 2 23 16 24 25 3 4 26 rngqiprngu R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I 1 R = U - ˙ 1 ˙ · ˙ U + ˙ 1 ˙
28 18 27 jca R Rng I 2Ideal R R 𝑠 I Ring R / 𝑠 R ~ QG I Ring U 1 R / 𝑠 R ~ QG I R Ring 1 R = U - ˙ 1 ˙ · ˙ U + ˙ 1 ˙