Metamath Proof Explorer


Theorem ringunitnzdiv

Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025)

Ref Expression
Hypotheses ringunitnzdiv.b B=BaseR
ringunitnzdiv.z 0˙=0R
ringunitnzdiv.t ·˙=R
ringunitnzdiv.r φRRing
ringunitnzdiv.y φYB
ringunitnzdiv.x φXUnitR
Assertion ringunitnzdiv φX·˙Y=0˙Y=0˙

Proof

Step Hyp Ref Expression
1 ringunitnzdiv.b B=BaseR
2 ringunitnzdiv.z 0˙=0R
3 ringunitnzdiv.t ·˙=R
4 ringunitnzdiv.r φRRing
5 ringunitnzdiv.y φYB
6 ringunitnzdiv.x φXUnitR
7 eqid 1R=1R
8 eqid UnitR=UnitR
9 1 8 unitcl XUnitRXB
10 6 9 syl φXB
11 eqid invrR=invrR
12 8 11 1 ringinvcl RRingXUnitRinvrRXB
13 4 6 12 syl2anc φinvrRXB
14 oveq1 e=invrRXe·˙X=invrRX·˙X
15 14 eqeq1d e=invrRXe·˙X=1RinvrRX·˙X=1R
16 15 adantl φe=invrRXe·˙X=1RinvrRX·˙X=1R
17 8 11 3 7 unitlinv RRingXUnitRinvrRX·˙X=1R
18 4 6 17 syl2anc φinvrRX·˙X=1R
19 13 16 18 rspcedvd φeBe·˙X=1R
20 1 3 7 2 4 10 19 5 ringinvnzdiv φX·˙Y=0˙Y=0˙