Description: In a unitary ring, a unit is not a zero divisor. (Contributed by AV, 7-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringunitnzdiv.b | |
|
ringunitnzdiv.z | |
||
ringunitnzdiv.t | |
||
ringunitnzdiv.r | |
||
ringunitnzdiv.y | |
||
ringunitnzdiv.x | |
||
Assertion | ringunitnzdiv | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringunitnzdiv.b | |
|
2 | ringunitnzdiv.z | |
|
3 | ringunitnzdiv.t | |
|
4 | ringunitnzdiv.r | |
|
5 | ringunitnzdiv.y | |
|
6 | ringunitnzdiv.x | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 1 8 | unitcl | |
10 | 6 9 | syl | |
11 | eqid | |
|
12 | 8 11 1 | ringinvcl | |
13 | 4 6 12 | syl2anc | |
14 | oveq1 | |
|
15 | 14 | eqeq1d | |
16 | 15 | adantl | |
17 | 8 11 3 7 | unitlinv | |
18 | 4 6 17 | syl2anc | |
19 | 13 16 18 | rspcedvd | |
20 | 1 3 7 2 4 10 19 5 | ringinvnzdiv | |