Description: Change the variable x in the expression for "the unique x such that ps " to another variable y contained in expression B . Use reuhypd to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | riotaxfrd.1 | |
|
riotaxfrd.2 | |
||
riotaxfrd.3 | |
||
riotaxfrd.4 | |
||
riotaxfrd.5 | |
||
riotaxfrd.6 | |
||
Assertion | riotaxfrd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaxfrd.1 | |
|
2 | riotaxfrd.2 | |
|
3 | riotaxfrd.3 | |
|
4 | riotaxfrd.4 | |
|
5 | riotaxfrd.5 | |
|
6 | riotaxfrd.6 | |
|
7 | rabid | |
|
8 | 7 | baib | |
9 | 8 | riotabiia | |
10 | 2 6 4 | reuxfr1ds | |
11 | riotacl2 | |
|
12 | 11 | adantl | |
13 | riotacl | |
|
14 | nfriota1 | |
|
15 | 14 1 2 4 5 | rabxfrd | |
16 | 13 15 | sylan2 | |
17 | 12 16 | mpbird | |
18 | 17 | ex | |
19 | 10 18 | sylbid | |
20 | 19 | imp | |
21 | 3 | ex | |
22 | 13 21 | syl5 | |
23 | 10 22 | sylbid | |
24 | 23 | imp | |
25 | 7 | baibr | |
26 | 25 | reubiia | |
27 | 26 | biimpi | |
28 | 27 | adantl | |
29 | nfcv | |
|
30 | nfrab1 | |
|
31 | 30 | nfel2 | |
32 | eleq1 | |
|
33 | 29 31 32 | riota2f | |
34 | 24 28 33 | syl2anc | |
35 | 20 34 | mpbid | |
36 | 9 35 | eqtr3id | |