Metamath Proof Explorer


Theorem riotaxfrd

Description: Change the variable x in the expression for "the unique x such that ps " to another variable y contained in expression B . Use reuhypd to eliminate the last hypothesis. (Contributed by NM, 16-Jan-2012) (Revised by Mario Carneiro, 15-Oct-2016)

Ref Expression
Hypotheses riotaxfrd.1 _yC
riotaxfrd.2 φyABA
riotaxfrd.3 φιyA|χACA
riotaxfrd.4 x=Bψχ
riotaxfrd.5 y=ιyA|χB=C
riotaxfrd.6 φxA∃!yAx=B
Assertion riotaxfrd φ∃!xAψιxA|ψ=C

Proof

Step Hyp Ref Expression
1 riotaxfrd.1 _yC
2 riotaxfrd.2 φyABA
3 riotaxfrd.3 φιyA|χACA
4 riotaxfrd.4 x=Bψχ
5 riotaxfrd.5 y=ιyA|χB=C
6 riotaxfrd.6 φxA∃!yAx=B
7 rabid xxA|ψxAψ
8 7 baib xAxxA|ψψ
9 8 riotabiia ιxA|xxA|ψ=ιxA|ψ
10 2 6 4 reuxfr1ds φ∃!xAψ∃!yAχ
11 riotacl2 ∃!yAχιyA|χyA|χ
12 11 adantl φ∃!yAχιyA|χyA|χ
13 riotacl ∃!yAχιyA|χA
14 nfriota1 _yιyA|χ
15 14 1 2 4 5 rabxfrd φιyA|χACxA|ψιyA|χyA|χ
16 13 15 sylan2 φ∃!yAχCxA|ψιyA|χyA|χ
17 12 16 mpbird φ∃!yAχCxA|ψ
18 17 ex φ∃!yAχCxA|ψ
19 10 18 sylbid φ∃!xAψCxA|ψ
20 19 imp φ∃!xAψCxA|ψ
21 3 ex φιyA|χACA
22 13 21 syl5 φ∃!yAχCA
23 10 22 sylbid φ∃!xAψCA
24 23 imp φ∃!xAψCA
25 7 baibr xAψxxA|ψ
26 25 reubiia ∃!xAψ∃!xAxxA|ψ
27 26 biimpi ∃!xAψ∃!xAxxA|ψ
28 27 adantl φ∃!xAψ∃!xAxxA|ψ
29 nfcv _xC
30 nfrab1 _xxA|ψ
31 30 nfel2 xCxA|ψ
32 eleq1 x=CxxA|ψCxA|ψ
33 29 31 32 riota2f CA∃!xAxxA|ψCxA|ψιxA|xxA|ψ=C
34 24 28 33 syl2anc φ∃!xAψCxA|ψιxA|xxA|ψ=C
35 20 34 mpbid φ∃!xAψιxA|xxA|ψ=C
36 9 35 eqtr3id φ∃!xAψιxA|ψ=C