Metamath Proof Explorer


Theorem rlim0

Description: Express the predicate B ( z ) converges to 0 . (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Feb-2015)

Ref Expression
Hypotheses rlim0.1 φzAB
rlim0.2 φA
Assertion rlim0 φzAB0x+yzAyzB<x

Proof

Step Hyp Ref Expression
1 rlim0.1 φzAB
2 rlim0.2 φA
3 0cnd φ0
4 1 2 3 rlim2 φzAB0x+yzAyzB0<x
5 subid1 BB0=B
6 5 fveq2d BB0=B
7 6 breq1d BB0<xB<x
8 7 imbi2d ByzB0<xyzB<x
9 8 ralimi zABzAyzB0<xyzB<x
10 ralbi zAyzB0<xyzB<xzAyzB0<xzAyzB<x
11 1 9 10 3syl φzAyzB0<xzAyzB<x
12 11 rexbidv φyzAyzB0<xyzAyzB<x
13 12 ralbidv φx+yzAyzB0<xx+yzAyzB<x
14 4 13 bitrd φzAB0x+yzAyzB<x