Metamath Proof Explorer


Theorem rmxp1

Description: Special addition-of-1 formula for X sequence. Part 1 of equation 2.9 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Assertion rmxp1 A2NAXrmN+1=AXrmNA+A21AYrmN

Proof

Step Hyp Ref Expression
1 1z 1
2 rmxadd A2N1AXrmN+1=AXrmNAXrm1+A21AYrmNAYrm1
3 1 2 mp3an3 A2NAXrmN+1=AXrmNAXrm1+A21AYrmNAYrm1
4 rmx1 A2AXrm1=A
5 4 adantr A2NAXrm1=A
6 5 oveq2d A2NAXrmNAXrm1=AXrmNA
7 rmy1 A2AYrm1=1
8 7 oveq2d A2AYrmNAYrm1=AYrmN1
9 8 adantr A2NAYrmNAYrm1=AYrmN1
10 frmy Yrm:2×
11 10 fovcl A2NAYrmN
12 11 zcnd A2NAYrmN
13 12 mulridd A2NAYrmN1=AYrmN
14 9 13 eqtrd A2NAYrmNAYrm1=AYrmN
15 14 oveq2d A2NA21AYrmNAYrm1=A21AYrmN
16 6 15 oveq12d A2NAXrmNAXrm1+A21AYrmNAYrm1=AXrmNA+A21AYrmN
17 3 16 eqtrd A2NAXrmN+1=AXrmNA+A21AYrmN