Metamath Proof Explorer


Theorem rmyabs

Description: rmY commutes with abs . (Contributed by Stefan O'Rear, 26-Sep-2014)

Ref Expression
Assertion rmyabs A2BAYrmB=AYrmB

Proof

Step Hyp Ref Expression
1 frmy Yrm:2×
2 1 fovcl A2aAYrma
3 2 zred A2aAYrma
4 simp1 A2a0aA2
5 elnn0z a0a0a
6 5 biimpri a0aa0
7 6 3adant1 A2a0aa0
8 rmxypos A2a00<AXrma0AYrma
9 4 7 8 syl2anc A2a0a0<AXrma0AYrma
10 9 simprd A2a0a0AYrma
11 rmyneg A2bAYrmb=AYrmb
12 oveq2 a=bAYrma=AYrmb
13 oveq2 a=bAYrma=AYrmb
14 oveq2 a=BAYrma=AYrmB
15 oveq2 a=BAYrma=AYrmB
16 3 10 11 12 13 14 15 oddcomabszz A2BAYrmB=AYrmB