Metamath Proof Explorer


Theorem rmydbl

Description: "Double-angle formula" for Y-values. Equation 2.14 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 2-Oct-2014)

Ref Expression
Assertion rmydbl A2NAYrm2 N=2AXrmNAYrmN

Proof

Step Hyp Ref Expression
1 zcn NN
2 1 adantl A2NN
3 2 2timesd A2N2 N=N+N
4 3 oveq2d A2NAYrm2 N=AYrmN+N
5 rmyadd A2NNAYrmN+N=AYrmNAXrmN+AXrmNAYrmN
6 5 3anidm23 A2NAYrmN+N=AYrmNAXrmN+AXrmNAYrmN
7 2cnd A2N2
8 frmx Xrm:2×0
9 8 fovcl A2NAXrmN0
10 9 nn0cnd A2NAXrmN
11 frmy Yrm:2×
12 11 fovcl A2NAYrmN
13 12 zcnd A2NAYrmN
14 7 10 13 mulassd A2N2AXrmNAYrmN=2AXrmNAYrmN
15 10 13 mulcld A2NAXrmNAYrmN
16 15 2timesd A2N2AXrmNAYrmN=AXrmNAYrmN+AXrmNAYrmN
17 10 13 mulcomd A2NAXrmNAYrmN=AYrmNAXrmN
18 17 oveq1d A2NAXrmNAYrmN+AXrmNAYrmN=AYrmNAXrmN+AXrmNAYrmN
19 14 16 18 3eqtrrd A2NAYrmNAXrmN+AXrmNAYrmN=2AXrmNAYrmN
20 4 6 19 3eqtrd A2NAYrm2 N=2AXrmNAYrmN