Metamath Proof Explorer


Theorem rmynn

Description: rmY is positive for positive arguments. (Contributed by Stefan O'Rear, 16-Oct-2014)

Ref Expression
Assertion rmynn A2NAYrmN

Proof

Step Hyp Ref Expression
1 nnz NN
2 frmy Yrm:2×
3 2 fovcl A2NAYrmN
4 1 3 sylan2 A2NAYrmN
5 rmy0 A2AYrm0=0
6 5 adantr A2NAYrm0=0
7 nngt0 N0<N
8 7 adantl A2N0<N
9 simpl A2NA2
10 0zd A2N0
11 1 adantl A2NN
12 ltrmy A20N0<NAYrm0<AYrmN
13 9 10 11 12 syl3anc A2N0<NAYrm0<AYrmN
14 8 13 mpbid A2NAYrm0<AYrmN
15 6 14 eqbrtrrd A2N0<AYrmN
16 elnnz AYrmNAYrmN0<AYrmN
17 4 15 16 sylanbrc A2NAYrmN