Metamath Proof Explorer


Theorem rnasclg

Description: The set of injected scalars is also interpretable as the span of the identity. (Contributed by Mario Carneiro, 9-Mar-2015)

Ref Expression
Hypotheses rnasclg.a A=algScW
rnasclg.o 1˙=1W
rnasclg.n N=LSpanW
Assertion rnasclg WLModWRingranA=N1˙

Proof

Step Hyp Ref Expression
1 rnasclg.a A=algScW
2 rnasclg.o 1˙=1W
3 rnasclg.n N=LSpanW
4 eqid ScalarW=ScalarW
5 eqid BaseScalarW=BaseScalarW
6 eqid W=W
7 1 4 5 6 2 asclfval A=yBaseScalarWyW1˙
8 7 rnmpt ranA=x|yBaseScalarWx=yW1˙
9 eqid BaseW=BaseW
10 9 2 ringidcl WRing1˙BaseW
11 4 5 9 6 3 lspsn WLMod1˙BaseWN1˙=x|yBaseScalarWx=yW1˙
12 10 11 sylan2 WLModWRingN1˙=x|yBaseScalarWx=yW1˙
13 8 12 eqtr4id WLModWRingranA=N1˙