Metamath Proof Explorer


Theorem rngohomadd

Description: Ring homomorphisms preserve addition. (Contributed by Jeff Madsen, 3-Jan-2011)

Ref Expression
Hypotheses rnghomadd.1 G=1stR
rnghomadd.2 X=ranG
rnghomadd.3 J=1stS
Assertion rngohomadd RRingOpsSRingOpsFRRngHomSAXBXFAGB=FAJFB

Proof

Step Hyp Ref Expression
1 rnghomadd.1 G=1stR
2 rnghomadd.2 X=ranG
3 rnghomadd.3 J=1stS
4 eqid 2ndR=2ndR
5 eqid GId2ndR=GId2ndR
6 eqid 2ndS=2ndS
7 eqid ranJ=ranJ
8 eqid GId2ndS=GId2ndS
9 1 4 2 5 3 6 7 8 isrngohom RRingOpsSRingOpsFRRngHomSF:XranJFGId2ndR=GId2ndSxXyXFxGy=FxJFyFx2ndRy=Fx2ndSFy
10 9 biimpa RRingOpsSRingOpsFRRngHomSF:XranJFGId2ndR=GId2ndSxXyXFxGy=FxJFyFx2ndRy=Fx2ndSFy
11 10 simp3d RRingOpsSRingOpsFRRngHomSxXyXFxGy=FxJFyFx2ndRy=Fx2ndSFy
12 11 3impa RRingOpsSRingOpsFRRngHomSxXyXFxGy=FxJFyFx2ndRy=Fx2ndSFy
13 simpl FxGy=FxJFyFx2ndRy=Fx2ndSFyFxGy=FxJFy
14 13 2ralimi xXyXFxGy=FxJFyFx2ndRy=Fx2ndSFyxXyXFxGy=FxJFy
15 12 14 syl RRingOpsSRingOpsFRRngHomSxXyXFxGy=FxJFy
16 fvoveq1 x=AFxGy=FAGy
17 fveq2 x=AFx=FA
18 17 oveq1d x=AFxJFy=FAJFy
19 16 18 eqeq12d x=AFxGy=FxJFyFAGy=FAJFy
20 oveq2 y=BAGy=AGB
21 20 fveq2d y=BFAGy=FAGB
22 fveq2 y=BFy=FB
23 22 oveq2d y=BFAJFy=FAJFB
24 21 23 eqeq12d y=BFAGy=FAJFyFAGB=FAJFB
25 19 24 rspc2v AXBXxXyXFxGy=FxJFyFAGB=FAJFB
26 15 25 mpan9 RRingOpsSRingOpsFRRngHomSAXBXFAGB=FAJFB