Metamath Proof Explorer


Theorem rngohomval

Description: The set of ring homomorphisms. (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 22-Sep-2015)

Ref Expression
Hypotheses rnghomval.1 G=1stR
rnghomval.2 H=2ndR
rnghomval.3 X=ranG
rnghomval.4 U=GIdH
rnghomval.5 J=1stS
rnghomval.6 K=2ndS
rnghomval.7 Y=ranJ
rnghomval.8 V=GIdK
Assertion rngohomval RRingOpsSRingOpsRRngHomS=fYX|fU=VxXyXfxGy=fxJfyfxHy=fxKfy

Proof

Step Hyp Ref Expression
1 rnghomval.1 G=1stR
2 rnghomval.2 H=2ndR
3 rnghomval.3 X=ranG
4 rnghomval.4 U=GIdH
5 rnghomval.5 J=1stS
6 rnghomval.6 K=2ndS
7 rnghomval.7 Y=ranJ
8 rnghomval.8 V=GIdK
9 simpr r=Rs=Ss=S
10 9 fveq2d r=Rs=S1sts=1stS
11 10 5 eqtr4di r=Rs=S1sts=J
12 11 rneqd r=Rs=Sran1sts=ranJ
13 12 7 eqtr4di r=Rs=Sran1sts=Y
14 simpl r=Rs=Sr=R
15 14 fveq2d r=Rs=S1str=1stR
16 15 1 eqtr4di r=Rs=S1str=G
17 16 rneqd r=Rs=Sran1str=ranG
18 17 3 eqtr4di r=Rs=Sran1str=X
19 13 18 oveq12d r=Rs=Sran1stsran1str=YX
20 14 fveq2d r=Rs=S2ndr=2ndR
21 20 2 eqtr4di r=Rs=S2ndr=H
22 21 fveq2d r=Rs=SGId2ndr=GIdH
23 22 4 eqtr4di r=Rs=SGId2ndr=U
24 23 fveq2d r=Rs=SfGId2ndr=fU
25 9 fveq2d r=Rs=S2nds=2ndS
26 25 6 eqtr4di r=Rs=S2nds=K
27 26 fveq2d r=Rs=SGId2nds=GIdK
28 27 8 eqtr4di r=Rs=SGId2nds=V
29 24 28 eqeq12d r=Rs=SfGId2ndr=GId2ndsfU=V
30 16 oveqd r=Rs=Sx1stry=xGy
31 30 fveq2d r=Rs=Sfx1stry=fxGy
32 11 oveqd r=Rs=Sfx1stsfy=fxJfy
33 31 32 eqeq12d r=Rs=Sfx1stry=fx1stsfyfxGy=fxJfy
34 21 oveqd r=Rs=Sx2ndry=xHy
35 34 fveq2d r=Rs=Sfx2ndry=fxHy
36 26 oveqd r=Rs=Sfx2ndsfy=fxKfy
37 35 36 eqeq12d r=Rs=Sfx2ndry=fx2ndsfyfxHy=fxKfy
38 33 37 anbi12d r=Rs=Sfx1stry=fx1stsfyfx2ndry=fx2ndsfyfxGy=fxJfyfxHy=fxKfy
39 18 38 raleqbidv r=Rs=Syran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfyyXfxGy=fxJfyfxHy=fxKfy
40 18 39 raleqbidv r=Rs=Sxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfyxXyXfxGy=fxJfyfxHy=fxKfy
41 29 40 anbi12d r=Rs=SfGId2ndr=GId2ndsxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfyfU=VxXyXfxGy=fxJfyfxHy=fxKfy
42 19 41 rabeqbidv r=Rs=Sfran1stsran1str|fGId2ndr=GId2ndsxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfy=fYX|fU=VxXyXfxGy=fxJfyfxHy=fxKfy
43 df-rngohom RngHom=rRingOps,sRingOpsfran1stsran1str|fGId2ndr=GId2ndsxran1stryran1strfx1stry=fx1stsfyfx2ndry=fx2ndsfy
44 ovex YXV
45 44 rabex fYX|fU=VxXyXfxGy=fxJfyfxHy=fxKfyV
46 42 43 45 ovmpoa RRingOpsSRingOpsRRngHomS=fYX|fU=VxXyXfxGy=fxJfyfxHy=fxKfy