Description: Negation in a ring is the same as right multiplication by -u 1 . (Contributed by Jeff Madsen, 19-Jun-2010)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ringneg.1 | |
|
ringneg.2 | |
||
ringneg.3 | |
||
ringneg.4 | |
||
ringneg.5 | |
||
Assertion | rngonegmn1r | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringneg.1 | |
|
2 | ringneg.2 | |
|
3 | ringneg.3 | |
|
4 | ringneg.4 | |
|
5 | ringneg.5 | |
|
6 | 1 | rneqi | |
7 | 3 6 | eqtri | |
8 | 7 2 5 | rngo1cl | |
9 | 1 3 4 | rngonegcl | |
10 | 8 9 | mpdan | |
11 | 10 | adantr | |
12 | 8 | adantr | |
13 | 11 12 | jca | |
14 | 1 2 3 | rngodi | |
15 | 14 | 3exp2 | |
16 | 15 | imp43 | |
17 | 13 16 | mpdan | |
18 | eqid | |
|
19 | 1 3 4 18 | rngoaddneg2 | |
20 | 8 19 | mpdan | |
21 | 20 | adantr | |
22 | 21 | oveq2d | |
23 | 18 3 1 2 | rngorz | |
24 | 22 23 | eqtrd | |
25 | 2 7 5 | rngoridm | |
26 | 25 | oveq2d | |
27 | 17 24 26 | 3eqtr3rd | |
28 | 1 2 3 | rngocl | |
29 | 11 28 | mpd3an3 | |
30 | 1 | rngogrpo | |
31 | 3 18 4 | grpoinvid2 | |
32 | 30 31 | syl3an1 | |
33 | 29 32 | mpd3an3 | |
34 | 27 33 | mpbird | |