Metamath Proof Explorer


Theorem rngonegmn1r

Description: Negation in a ring is the same as right multiplication by -u 1 . (Contributed by Jeff Madsen, 19-Jun-2010)

Ref Expression
Hypotheses ringneg.1 G=1stR
ringneg.2 H=2ndR
ringneg.3 X=ranG
ringneg.4 N=invG
ringneg.5 U=GIdH
Assertion rngonegmn1r RRingOpsAXNA=AHNU

Proof

Step Hyp Ref Expression
1 ringneg.1 G=1stR
2 ringneg.2 H=2ndR
3 ringneg.3 X=ranG
4 ringneg.4 N=invG
5 ringneg.5 U=GIdH
6 1 rneqi ranG=ran1stR
7 3 6 eqtri X=ran1stR
8 7 2 5 rngo1cl RRingOpsUX
9 1 3 4 rngonegcl RRingOpsUXNUX
10 8 9 mpdan RRingOpsNUX
11 10 adantr RRingOpsAXNUX
12 8 adantr RRingOpsAXUX
13 11 12 jca RRingOpsAXNUXUX
14 1 2 3 rngodi RRingOpsAXNUXUXAHNUGU=AHNUGAHU
15 14 3exp2 RRingOpsAXNUXUXAHNUGU=AHNUGAHU
16 15 imp43 RRingOpsAXNUXUXAHNUGU=AHNUGAHU
17 13 16 mpdan RRingOpsAXAHNUGU=AHNUGAHU
18 eqid GIdG=GIdG
19 1 3 4 18 rngoaddneg2 RRingOpsUXNUGU=GIdG
20 8 19 mpdan RRingOpsNUGU=GIdG
21 20 adantr RRingOpsAXNUGU=GIdG
22 21 oveq2d RRingOpsAXAHNUGU=AHGIdG
23 18 3 1 2 rngorz RRingOpsAXAHGIdG=GIdG
24 22 23 eqtrd RRingOpsAXAHNUGU=GIdG
25 2 7 5 rngoridm RRingOpsAXAHU=A
26 25 oveq2d RRingOpsAXAHNUGAHU=AHNUGA
27 17 24 26 3eqtr3rd RRingOpsAXAHNUGA=GIdG
28 1 2 3 rngocl RRingOpsAXNUXAHNUX
29 11 28 mpd3an3 RRingOpsAXAHNUX
30 1 rngogrpo RRingOpsGGrpOp
31 3 18 4 grpoinvid2 GGrpOpAXAHNUXNA=AHNUAHNUGA=GIdG
32 30 31 syl3an1 RRingOpsAXAHNUXNA=AHNUAHNUGA=GIdG
33 29 32 mpd3an3 RRingOpsAXNA=AHNUAHNUGA=GIdG
34 27 33 mpbird RRingOpsAXNA=AHNU