Metamath Proof Explorer


Theorem rngqiprngho

Description: F is a homomorphism of non-unital rings. (Contributed by AV, 21-Feb-2025)

Ref Expression
Hypotheses rng2idlring.r φ R Rng
rng2idlring.i φ I 2Ideal R
rng2idlring.j J = R 𝑠 I
rng2idlring.u φ J Ring
rng2idlring.b B = Base R
rng2idlring.t · ˙ = R
rng2idlring.1 1 ˙ = 1 J
rngqiprngim.g ˙ = R ~ QG I
rngqiprngim.q Q = R / 𝑠 ˙
rngqiprngim.c C = Base Q
rngqiprngim.p P = Q × 𝑠 J
rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
Assertion rngqiprngho φ F R RngHom P

Proof

Step Hyp Ref Expression
1 rng2idlring.r φ R Rng
2 rng2idlring.i φ I 2Ideal R
3 rng2idlring.j J = R 𝑠 I
4 rng2idlring.u φ J Ring
5 rng2idlring.b B = Base R
6 rng2idlring.t · ˙ = R
7 rng2idlring.1 1 ˙ = 1 J
8 rngqiprngim.g ˙ = R ~ QG I
9 rngqiprngim.q Q = R / 𝑠 ˙
10 rngqiprngim.c C = Base Q
11 rngqiprngim.p P = Q × 𝑠 J
12 rngqiprngim.f F = x B x ˙ 1 ˙ · ˙ x
13 1 2 3 4 5 6 7 8 9 10 11 rngqiprng φ P Rng
14 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprngghm φ F R GrpHom P
15 1 2 3 4 5 6 7 8 9 10 11 12 rngqiprnglin φ a B b B F a · ˙ b = F a P F b
16 14 15 jca φ F R GrpHom P a B b B F a · ˙ b = F a P F b
17 eqid P = P
18 5 6 17 isrnghm F R RngHom P R Rng P Rng F R GrpHom P a B b B F a · ˙ b = F a P F b
19 1 13 16 18 syl21anbrc φ F R RngHom P