Metamath Proof Explorer


Theorem rp-isfinite6

Description: A set is said to be finite if it is either empty or it can be put in one-to-one correspondence with all the natural numbers between 1 and some n e. NN . (Contributed by RP, 10-Mar-2020)

Ref Expression
Assertion rp-isfinite6 AFinA=n1nA

Proof

Step Hyp Ref Expression
1 exmid A=¬A=
2 1 biantrur AFinA=¬A=AFin
3 andir A=¬A=AFinA=AFin¬A=AFin
4 2 3 bitri AFinA=AFin¬A=AFin
5 simpl A=AFinA=
6 0fin Fin
7 eleq1a FinA=AFin
8 6 7 ax-mp A=AFin
9 8 ancli A=A=AFin
10 5 9 impbii A=AFinA=
11 rp-isfinite5 AFinn01nA
12 df-rex n01nAnn01nA
13 11 12 bitri AFinnn01nA
14 13 anbi2i ¬A=AFin¬A=nn01nA
15 df-rex n1nAnn1nA
16 en0 AA=
17 ensymb AA
18 16 17 bitr3i A=A
19 18 notbii ¬A=¬A
20 elnn0 n0nn=0
21 20 anbi1i n01nAnn=01nA
22 andir nn=01nAn1nAn=01nA
23 21 22 bitri n01nAn1nAn=01nA
24 19 23 anbi12i ¬A=n01nA¬An1nAn=01nA
25 andi ¬An1nAn=01nA¬An1nA¬An=01nA
26 24 25 bitri ¬A=n01nA¬An1nA¬An=01nA
27 3anass ¬An1nA¬An1nA
28 3anass ¬An=01nA¬An=01nA
29 27 28 orbi12i ¬An1nA¬An=01nA¬An1nA¬An=01nA
30 26 29 sylbb2 ¬A=n01nA¬An1nA¬An=01nA
31 simp2 ¬An1nAn
32 oveq2 n=01n=10
33 fz10 10=
34 32 33 eqtrdi n=01n=
35 simp2 ¬A1n=1nA1n=
36 simp3 ¬A1n=1nA1nA
37 35 36 eqbrtrrd ¬A1n=1nAA
38 simp1 ¬A1n=1nA¬A
39 37 38 pm2.21dd ¬A1n=1nAn
40 34 39 syl3an2 ¬An=01nAn
41 31 40 jaoi ¬An1nA¬An=01nAn
42 30 41 syl ¬A=n01nAn
43 simprr ¬A=n01nA1nA
44 42 43 jca ¬A=n01nAn1nA
45 nngt0 n0<n
46 hash0 =0
47 46 a1i n=0
48 nnnn0 nn0
49 hashfz1 n01n=n
50 48 49 syl n1n=n
51 45 47 50 3brtr4d n<1n
52 fzfi 1nFin
53 hashsdom Fin1nFin<1n1n
54 6 52 53 mp2an <1n1n
55 51 54 sylib n1n
56 55 anim1i n1nA1n1nA
57 sdomentr 1n1nAA
58 sdomnen A¬A
59 57 58 syl 1n1nA¬A
60 en0r AA=
61 60 notbii ¬A¬A=
62 59 61 sylib 1n1nA¬A=
63 56 62 syl n1nA¬A=
64 48 anim1i n1nAn01nA
65 63 64 jca n1nA¬A=n01nA
66 44 65 impbii ¬A=n01nAn1nA
67 66 exbii n¬A=n01nAnn1nA
68 19.42v n¬A=n01nA¬A=nn01nA
69 15 67 68 3bitr2ri ¬A=nn01nAn1nA
70 14 69 bitri ¬A=AFinn1nA
71 10 70 orbi12i A=AFin¬A=AFinA=n1nA
72 4 71 bitri AFinA=n1nA