| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exmid |
|
| 2 |
1
|
biantrur |
|
| 3 |
|
andir |
|
| 4 |
2 3
|
bitri |
|
| 5 |
|
simpl |
|
| 6 |
|
0fi |
|
| 7 |
|
eleq1a |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
8
|
ancli |
|
| 10 |
5 9
|
impbii |
|
| 11 |
|
rp-isfinite5 |
|
| 12 |
|
df-rex |
|
| 13 |
11 12
|
bitri |
|
| 14 |
13
|
anbi2i |
|
| 15 |
|
df-rex |
|
| 16 |
|
en0 |
|
| 17 |
|
ensymb |
|
| 18 |
16 17
|
bitr3i |
|
| 19 |
18
|
notbii |
|
| 20 |
|
elnn0 |
|
| 21 |
20
|
anbi1i |
|
| 22 |
|
andir |
|
| 23 |
21 22
|
bitri |
|
| 24 |
19 23
|
anbi12i |
|
| 25 |
|
andi |
|
| 26 |
24 25
|
bitri |
|
| 27 |
|
3anass |
|
| 28 |
|
3anass |
|
| 29 |
27 28
|
orbi12i |
|
| 30 |
26 29
|
sylbb2 |
|
| 31 |
|
simp2 |
|
| 32 |
|
oveq2 |
|
| 33 |
|
fz10 |
|
| 34 |
32 33
|
eqtrdi |
|
| 35 |
|
simp2 |
|
| 36 |
|
simp3 |
|
| 37 |
35 36
|
eqbrtrrd |
|
| 38 |
|
simp1 |
|
| 39 |
37 38
|
pm2.21dd |
|
| 40 |
34 39
|
syl3an2 |
|
| 41 |
31 40
|
jaoi |
|
| 42 |
30 41
|
syl |
|
| 43 |
|
simprr |
|
| 44 |
42 43
|
jca |
|
| 45 |
|
nngt0 |
|
| 46 |
|
hash0 |
|
| 47 |
46
|
a1i |
|
| 48 |
|
nnnn0 |
|
| 49 |
|
hashfz1 |
|
| 50 |
48 49
|
syl |
|
| 51 |
45 47 50
|
3brtr4d |
|
| 52 |
|
fzfi |
|
| 53 |
|
hashsdom |
|
| 54 |
6 52 53
|
mp2an |
|
| 55 |
51 54
|
sylib |
|
| 56 |
55
|
anim1i |
|
| 57 |
|
sdomentr |
|
| 58 |
|
sdomnen |
|
| 59 |
57 58
|
syl |
|
| 60 |
|
en0r |
|
| 61 |
60
|
notbii |
|
| 62 |
59 61
|
sylib |
|
| 63 |
56 62
|
syl |
|
| 64 |
48
|
anim1i |
|
| 65 |
63 64
|
jca |
|
| 66 |
44 65
|
impbii |
|
| 67 |
66
|
exbii |
|
| 68 |
|
19.42v |
|
| 69 |
15 67 68
|
3bitr2ri |
|
| 70 |
14 69
|
bitri |
|
| 71 |
10 70
|
orbi12i |
|
| 72 |
4 71
|
bitri |
|