Metamath Proof Explorer


Theorem rpnnen2lem6

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 F=x𝒫nifnx13n0
Assertion rpnnen2lem6 AMkMFAk

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 eqid M=M
3 nnz MM
4 3 adantl AMM
5 eqidd AMkMFAk=FAk
6 1 rpnnen2lem2 AFA:
7 6 ad2antrr AMkMFA:
8 eluznn MkMk
9 8 adantll AMkMk
10 7 9 ffvelcdmd AMkMFAk
11 1 rpnnen2lem5 AMseqM+FAdom
12 2 4 5 10 11 isumrecl AMkMFAk