Metamath Proof Explorer


Theorem rpnnen2lem5

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 F=x𝒫nifnx13n0
Assertion rpnnen2lem5 AMseqM+FAdom

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 nnuz =1
3 1nn 1
4 3 a1i A1
5 ssid
6 1 rpnnen2lem2 F:
7 5 6 mp1i AF:
8 7 ffvelcdmda AkFk
9 1 rpnnen2lem2 AFA:
10 9 ffvelcdmda AkFAk
11 1 rpnnen2lem3 seq1+F12
12 seqex seq1+FV
13 ovex 12V
14 12 13 breldm seq1+F12seq1+Fdom
15 11 14 mp1i Aseq1+Fdom
16 elnnuz kk1
17 1 rpnnen2lem4 Ak0FAkFAkFk
18 5 17 mp3an2 Ak0FAkFAkFk
19 16 18 sylan2br Ak10FAkFAkFk
20 19 simpld Ak10FAk
21 19 simprd Ak1FAkFk
22 2 4 8 10 15 20 21 cvgcmp Aseq1+FAdom
23 22 adantr AMseq1+FAdom
24 simpr AMM
25 10 adantlr AMkFAk
26 25 recnd AMkFAk
27 2 24 26 iserex AMseq1+FAdomseqM+FAdom
28 23 27 mpbid AMseqM+FAdom