Metamath Proof Explorer


Theorem rpnnen2lem5

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
Assertion rpnnen2lem5 ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹𝐴 ) ) ∈ dom ⇝ )

Proof

Step Hyp Ref Expression
1 rpnnen2.1 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) )
2 nnuz ℕ = ( ℤ ‘ 1 )
3 1nn 1 ∈ ℕ
4 3 a1i ( 𝐴 ⊆ ℕ → 1 ∈ ℕ )
5 ssid ℕ ⊆ ℕ
6 1 rpnnen2lem2 ( ℕ ⊆ ℕ → ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ )
7 5 6 mp1i ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ ℕ ) : ℕ ⟶ ℝ )
8 7 ffvelrnda ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ∈ ℝ )
9 1 rpnnen2lem2 ( 𝐴 ⊆ ℕ → ( 𝐹𝐴 ) : ℕ ⟶ ℝ )
10 9 ffvelrnda ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∈ ℝ )
11 1 rpnnen2lem3 seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 )
12 seqex seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ∈ V
13 ovex ( 1 / 2 ) ∈ V
14 12 13 breldm ( seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ⇝ ( 1 / 2 ) → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ∈ dom ⇝ )
15 11 14 mp1i ( 𝐴 ⊆ ℕ → seq 1 ( + , ( 𝐹 ‘ ℕ ) ) ∈ dom ⇝ )
16 elnnuz ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ ‘ 1 ) )
17 1 rpnnen2lem4 ( ( 𝐴 ⊆ ℕ ∧ ℕ ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) )
18 5 17 mp3an2 ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) )
19 16 18 sylan2br ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ( ℤ ‘ 1 ) ) → ( 0 ≤ ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) ) )
20 19 simpld ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ( ℤ ‘ 1 ) ) → 0 ≤ ( ( 𝐹𝐴 ) ‘ 𝑘 ) )
21 19 simprd ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ( ℤ ‘ 1 ) ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ ℕ ) ‘ 𝑘 ) )
22 2 4 8 10 15 20 21 cvgcmp ( 𝐴 ⊆ ℕ → seq 1 ( + , ( 𝐹𝐴 ) ) ∈ dom ⇝ )
23 22 adantr ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 1 ( + , ( 𝐹𝐴 ) ) ∈ dom ⇝ )
24 simpr ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ )
25 10 adantlr ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∈ ℝ )
26 25 recnd ( ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝐴 ) ‘ 𝑘 ) ∈ ℂ )
27 2 24 26 iserex ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( seq 1 ( + , ( 𝐹𝐴 ) ) ∈ dom ⇝ ↔ seq 𝑀 ( + , ( 𝐹𝐴 ) ) ∈ dom ⇝ ) )
28 23 27 mpbid ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹𝐴 ) ) ∈ dom ⇝ )