| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 2 |
|
nnnn0 |
⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) |
| 3 |
|
0re |
⊢ 0 ∈ ℝ |
| 4 |
|
1re |
⊢ 1 ∈ ℝ |
| 5 |
|
3nn |
⊢ 3 ∈ ℕ |
| 6 |
|
nndivre |
⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℕ ) → ( 1 / 3 ) ∈ ℝ ) |
| 7 |
4 5 6
|
mp2an |
⊢ ( 1 / 3 ) ∈ ℝ |
| 8 |
|
3re |
⊢ 3 ∈ ℝ |
| 9 |
|
3pos |
⊢ 0 < 3 |
| 10 |
8 9
|
recgt0ii |
⊢ 0 < ( 1 / 3 ) |
| 11 |
3 7 10
|
ltleii |
⊢ 0 ≤ ( 1 / 3 ) |
| 12 |
|
expge0 |
⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ ( 1 / 3 ) ) → 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 13 |
7 12
|
mp3an1 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 0 ≤ ( 1 / 3 ) ) → 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 14 |
2 11 13
|
sylancl |
⊢ ( 𝑘 ∈ ℕ → 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 15 |
14
|
3ad2ant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) |
| 16 |
|
0le0 |
⊢ 0 ≤ 0 |
| 17 |
|
breq2 |
⊢ ( ( ( 1 / 3 ) ↑ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) → ( 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ↔ 0 ≤ if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) ) |
| 18 |
|
breq2 |
⊢ ( 0 = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) → ( 0 ≤ 0 ↔ 0 ≤ if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) ) |
| 19 |
17 18
|
ifboth |
⊢ ( ( 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ∧ 0 ≤ 0 ) → 0 ≤ if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 20 |
15 16 19
|
sylancl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 21 |
|
sstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ) → 𝐴 ⊆ ℕ ) |
| 22 |
1
|
rpnnen2lem1 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 23 |
21 22
|
stoic3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 24 |
20 23
|
breqtrrd |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
| 25 |
|
reexpcl |
⊢ ( ( ( 1 / 3 ) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℝ ) |
| 26 |
7 2 25
|
sylancr |
⊢ ( 𝑘 ∈ ℕ → ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℝ ) |
| 27 |
26
|
3ad2ant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℝ ) |
| 28 |
|
0red |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 0 ∈ ℝ ) |
| 29 |
|
simp1 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → 𝐴 ⊆ 𝐵 ) |
| 30 |
29
|
sseld |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵 ) ) |
| 31 |
|
ifle |
⊢ ( ( ( ( ( 1 / 3 ) ↑ 𝑘 ) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ( ( 1 / 3 ) ↑ 𝑘 ) ) ∧ ( 𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵 ) ) → if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ≤ if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 32 |
27 28 15 30 31
|
syl31anc |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → if ( 𝑘 ∈ 𝐴 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ≤ if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 33 |
1
|
rpnnen2lem1 |
⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 34 |
33
|
3adant1 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = if ( 𝑘 ∈ 𝐵 , ( ( 1 / 3 ) ↑ 𝑘 ) , 0 ) ) |
| 35 |
32 23 34
|
3brtr4d |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 36 |
24 35
|
jca |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |