Metamath Proof Explorer


Theorem rpnnen2lem7

Description: Lemma for rpnnen2 . (Contributed by Mario Carneiro, 13-May-2013) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Hypothesis rpnnen2.1 F=x𝒫nifnx13n0
Assertion rpnnen2lem7 ABBMkMFAkkMFBk

Proof

Step Hyp Ref Expression
1 rpnnen2.1 F=x𝒫nifnx13n0
2 eqid M=M
3 simp3 ABBMM
4 3 nnzd ABBMM
5 eqidd ABBMkMFAk=FAk
6 eluznn MkMk
7 3 6 sylan ABBMkMk
8 sstr ABBA
9 8 3adant3 ABBMA
10 1 rpnnen2lem2 AFA:
11 9 10 syl ABBMFA:
12 11 ffvelcdmda ABBMkFAk
13 7 12 syldan ABBMkMFAk
14 eqidd ABBMkMFBk=FBk
15 1 rpnnen2lem2 BFB:
16 15 3ad2ant2 ABBMFB:
17 16 ffvelcdmda ABBMkFBk
18 7 17 syldan ABBMkMFBk
19 1 rpnnen2lem4 ABBk0FAkFAkFBk
20 19 simprd ABBkFAkFBk
21 20 3expa ABBkFAkFBk
22 21 3adantl3 ABBMkFAkFBk
23 7 22 syldan ABBMkMFAkFBk
24 1 rpnnen2lem5 AMseqM+FAdom
25 8 24 stoic3 ABBMseqM+FAdom
26 1 rpnnen2lem5 BMseqM+FBdom
27 26 3adant1 ABBMseqM+FBdom
28 2 4 5 13 14 18 23 25 27 isumle ABBMkMFAkkMFBk