| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rpnnen2.1 |
⊢ 𝐹 = ( 𝑥 ∈ 𝒫 ℕ ↦ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝑥 , ( ( 1 / 3 ) ↑ 𝑛 ) , 0 ) ) ) |
| 2 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑀 ) = ( ℤ≥ ‘ 𝑀 ) |
| 3 |
|
simp3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℕ ) |
| 4 |
3
|
nnzd |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝑀 ∈ ℤ ) |
| 5 |
|
eqidd |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ) |
| 6 |
|
eluznn |
⊢ ( ( 𝑀 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) |
| 7 |
3 6
|
sylan |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) |
| 8 |
|
sstr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ) → 𝐴 ⊆ ℕ ) |
| 9 |
8
|
3adant3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → 𝐴 ⊆ ℕ ) |
| 10 |
1
|
rpnnen2lem2 |
⊢ ( 𝐴 ⊆ ℕ → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐹 ‘ 𝐴 ) : ℕ ⟶ ℝ ) |
| 12 |
11
|
ffvelcdmda |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 13 |
7 12
|
syldan |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∈ ℝ ) |
| 14 |
|
eqidd |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) = ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 15 |
1
|
rpnnen2lem2 |
⊢ ( 𝐵 ⊆ ℕ → ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) |
| 16 |
15
|
3ad2ant2 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → ( 𝐹 ‘ 𝐵 ) : ℕ ⟶ ℝ ) |
| 17 |
16
|
ffvelcdmda |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 18 |
7 17
|
syldan |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ∈ ℝ ) |
| 19 |
1
|
rpnnen2lem4 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( 0 ≤ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ∧ ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) ) |
| 20 |
19
|
simprd |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 21 |
20
|
3expa |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 22 |
21
|
3adantl3 |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 23 |
7 22
|
syldan |
⊢ ( ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |
| 24 |
1
|
rpnnen2lem5 |
⊢ ( ( 𝐴 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 25 |
8 24
|
stoic3 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐴 ) ) ∈ dom ⇝ ) |
| 26 |
1
|
rpnnen2lem5 |
⊢ ( ( 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐵 ) ) ∈ dom ⇝ ) |
| 27 |
26
|
3adant1 |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → seq 𝑀 ( + , ( 𝐹 ‘ 𝐵 ) ) ∈ dom ⇝ ) |
| 28 |
2 4 5 13 14 18 23 25 27
|
isumle |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑀 ∈ ℕ ) → Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐴 ) ‘ 𝑘 ) ≤ Σ 𝑘 ∈ ( ℤ≥ ‘ 𝑀 ) ( ( 𝐹 ‘ 𝐵 ) ‘ 𝑘 ) ) |