Metamath Proof Explorer


Theorem rrgeq0

Description: Left-multiplication by a left regular element does not change zeroness. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses rrgval.e E=RLRegR
rrgval.b B=BaseR
rrgval.t ·˙=R
rrgval.z 0˙=0R
Assertion rrgeq0 RRingXEYBX·˙Y=0˙Y=0˙

Proof

Step Hyp Ref Expression
1 rrgval.e E=RLRegR
2 rrgval.b B=BaseR
3 rrgval.t ·˙=R
4 rrgval.z 0˙=0R
5 1 2 3 4 rrgeq0i XEYBX·˙Y=0˙Y=0˙
6 5 3adant1 RRingXEYBX·˙Y=0˙Y=0˙
7 simp1 RRingXEYBRRing
8 1 2 3 4 rrgval E=xB|yBx·˙y=0˙y=0˙
9 8 ssrab3 EB
10 simp2 RRingXEYBXE
11 9 10 sselid RRingXEYBXB
12 2 3 4 ringrz RRingXBX·˙0˙=0˙
13 7 11 12 syl2anc RRingXEYBX·˙0˙=0˙
14 oveq2 Y=0˙X·˙Y=X·˙0˙
15 14 eqeq1d Y=0˙X·˙Y=0˙X·˙0˙=0˙
16 13 15 syl5ibrcom RRingXEYBY=0˙X·˙Y=0˙
17 6 16 impbid RRingXEYBX·˙Y=0˙Y=0˙