Metamath Proof Explorer


Theorem rrxmfval

Description: The value of the Euclidean metric. Compare with rrnval . (Contributed by Thierry Arnoux, 30-Jun-2019)

Ref Expression
Hypotheses rrxmval.1 X=hI|finSupp0h
rrxmval.d D=distmsup
Assertion rrxmfval IVD=fX,gXksupp0fsupp0gfkgk2

Proof

Step Hyp Ref Expression
1 rrxmval.1 X=hI|finSupp0h
2 rrxmval.d D=distmsup
3 eqid fBasemsup,gBasemsupfldxIfxgx2=fBasemsup,gBasemsupfldxIfxgx2
4 fvex fldxIfxgx2V
5 3 4 fnmpoi fBasemsup,gBasemsupfldxIfxgx2FnBasemsup×Basemsup
6 eqid msup=msup
7 eqid Basemsup=Basemsup
8 6 7 rrxds IVfBasemsup,gBasemsupfldxIfxgx2=distmsup
9 2 8 eqtr4id IVD=fBasemsup,gBasemsupfldxIfxgx2
10 6 7 rrxbase IVBasemsup=hI|finSupp0h
11 1 10 eqtr4id IVX=Basemsup
12 11 sqxpeqd IVX×X=Basemsup×Basemsup
13 9 12 fneq12d IVDFnX×XfBasemsup,gBasemsupfldxIfxgx2FnBasemsup×Basemsup
14 5 13 mpbiri IVDFnX×X
15 fnov DFnX×XD=fX,gXfDg
16 14 15 sylib IVD=fX,gXfDg
17 1 2 rrxmval IVfXgXfDg=ksupp0fsupp0gfkgk2
18 17 mpoeq3dva IVfX,gXfDg=fX,gXksupp0fsupp0gfkgk2
19 16 18 eqtrd IVD=fX,gXksupp0fsupp0gfkgk2