Description: Lemma for ruc . There is no function that maps NN onto RR . (Use nex if you want this in the form -. E. f f : NN -onto-> RR .) (Contributed by NM, 14-Oct-2004) (Proof shortened by Fan Zheng, 6-Jun-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | ruclem13 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | forn | |
|
2 | 1 | difeq2d | |
3 | difid | |
|
4 | 2 3 | eqtrdi | |
5 | reex | |
|
6 | 5 5 | xpex | |
7 | 6 5 | mpoex | |
8 | 7 | isseti | |
9 | fof | |
|
10 | 9 | adantr | |
11 | simpr | |
|
12 | eqid | |
|
13 | eqid | |
|
14 | eqid | |
|
15 | 10 11 12 13 14 | ruclem12 | |
16 | n0i | |
|
17 | 15 16 | syl | |
18 | 17 | ex | |
19 | 18 | exlimdv | |
20 | 8 19 | mpi | |
21 | 4 20 | pm2.65i | |