Metamath Proof Explorer


Theorem ruclem13

Description: Lemma for ruc . There is no function that maps NN onto RR . (Use nex if you want this in the form -. E. f f : NN -onto-> RR .) (Contributed by NM, 14-Oct-2004) (Proof shortened by Fan Zheng, 6-Jun-2016)

Ref Expression
Assertion ruclem13 ¬F:onto

Proof

Step Hyp Ref Expression
1 forn F:ontoranF=
2 1 difeq2d F:ontoranF=
3 difid =
4 2 3 eqtrdi F:ontoranF=
5 reex V
6 5 5 xpex 2V
7 6 5 mpoex x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndxV
8 7 isseti dd=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
9 fof F:ontoF:
10 9 adantr F:ontod=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndxF:
11 simpr F:ontod=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndxd=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx
12 eqid 001F=001F
13 eqid seq0d001F=seq0d001F
14 eqid supran1stseq0d001F<=supran1stseq0d001F<
15 10 11 12 13 14 ruclem12 F:ontod=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndxsupran1stseq0d001F<ranF
16 n0i supran1stseq0d001F<ranF¬ranF=
17 15 16 syl F:ontod=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx¬ranF=
18 17 ex F:ontod=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx¬ranF=
19 18 exlimdv F:ontodd=x2,y1stx+2ndx2/mifm<y1stxmm+2ndx22ndx¬ranF=
20 8 19 mpi F:onto¬ranF=
21 4 20 pm2.65i ¬F:onto