Metamath Proof Explorer


Theorem ruclem12

Description: Lemma for ruc . The supremum of the increasing sequence 1st o. G is a real number that is not in the range of F . (Contributed by Mario Carneiro, 28-May-2014)

Ref Expression
Hypotheses ruc.1 φ F :
ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
ruc.4 C = 0 0 1 F
ruc.5 G = seq 0 D C
ruc.6 S = sup ran 1 st G <
Assertion ruclem12 φ S ran F

Proof

Step Hyp Ref Expression
1 ruc.1 φ F :
2 ruc.2 φ D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
3 ruc.4 C = 0 0 1 F
4 ruc.5 G = seq 0 D C
5 ruc.6 S = sup ran 1 st G <
6 1 2 3 4 ruclem11 φ ran 1 st G ran 1 st G z ran 1 st G z 1
7 6 simp1d φ ran 1 st G
8 6 simp2d φ ran 1 st G
9 1re 1
10 6 simp3d φ z ran 1 st G z 1
11 brralrspcev 1 z ran 1 st G z 1 n z ran 1 st G z n
12 9 10 11 sylancr φ n z ran 1 st G z n
13 7 8 12 suprcld φ sup ran 1 st G <
14 5 13 eqeltrid φ S
15 1 adantr φ n F :
16 2 adantr φ n D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
17 1 2 3 4 ruclem6 φ G : 0 2
18 nnm1nn0 n n 1 0
19 ffvelrn G : 0 2 n 1 0 G n 1 2
20 17 18 19 syl2an φ n G n 1 2
21 xp1st G n 1 2 1 st G n 1
22 20 21 syl φ n 1 st G n 1
23 xp2nd G n 1 2 2 nd G n 1
24 20 23 syl φ n 2 nd G n 1
25 1 ffvelrnda φ n F n
26 eqid 1 st 1 st G n 1 2 nd G n 1 D F n = 1 st 1 st G n 1 2 nd G n 1 D F n
27 eqid 2 nd 1 st G n 1 2 nd G n 1 D F n = 2 nd 1 st G n 1 2 nd G n 1 D F n
28 1 2 3 4 ruclem8 φ n 1 0 1 st G n 1 < 2 nd G n 1
29 18 28 sylan2 φ n 1 st G n 1 < 2 nd G n 1
30 15 16 22 24 25 26 27 29 ruclem3 φ n F n < 1 st 1 st G n 1 2 nd G n 1 D F n 2 nd 1 st G n 1 2 nd G n 1 D F n < F n
31 1 2 3 4 ruclem7 φ n 1 0 G n - 1 + 1 = G n 1 D F n - 1 + 1
32 18 31 sylan2 φ n G n - 1 + 1 = G n 1 D F n - 1 + 1
33 nncn n n
34 33 adantl φ n n
35 ax-1cn 1
36 npcan n 1 n - 1 + 1 = n
37 34 35 36 sylancl φ n n - 1 + 1 = n
38 37 fveq2d φ n G n - 1 + 1 = G n
39 1st2nd2 G n 1 2 G n 1 = 1 st G n 1 2 nd G n 1
40 20 39 syl φ n G n 1 = 1 st G n 1 2 nd G n 1
41 37 fveq2d φ n F n - 1 + 1 = F n
42 40 41 oveq12d φ n G n 1 D F n - 1 + 1 = 1 st G n 1 2 nd G n 1 D F n
43 32 38 42 3eqtr3d φ n G n = 1 st G n 1 2 nd G n 1 D F n
44 43 fveq2d φ n 1 st G n = 1 st 1 st G n 1 2 nd G n 1 D F n
45 44 breq2d φ n F n < 1 st G n F n < 1 st 1 st G n 1 2 nd G n 1 D F n
46 43 fveq2d φ n 2 nd G n = 2 nd 1 st G n 1 2 nd G n 1 D F n
47 46 breq1d φ n 2 nd G n < F n 2 nd 1 st G n 1 2 nd G n 1 D F n < F n
48 45 47 orbi12d φ n F n < 1 st G n 2 nd G n < F n F n < 1 st 1 st G n 1 2 nd G n 1 D F n 2 nd 1 st G n 1 2 nd G n 1 D F n < F n
49 30 48 mpbird φ n F n < 1 st G n 2 nd G n < F n
50 7 adantr φ n ran 1 st G
51 8 adantr φ n ran 1 st G
52 12 adantr φ n n z ran 1 st G z n
53 nnnn0 n n 0
54 fvco3 G : 0 2 n 0 1 st G n = 1 st G n
55 17 53 54 syl2an φ n 1 st G n = 1 st G n
56 17 adantr φ n G : 0 2
57 1stcof G : 0 2 1 st G : 0
58 ffn 1 st G : 0 1 st G Fn 0
59 56 57 58 3syl φ n 1 st G Fn 0
60 53 adantl φ n n 0
61 fnfvelrn 1 st G Fn 0 n 0 1 st G n ran 1 st G
62 59 60 61 syl2anc φ n 1 st G n ran 1 st G
63 55 62 eqeltrrd φ n 1 st G n ran 1 st G
64 50 51 52 63 suprubd φ n 1 st G n sup ran 1 st G <
65 64 5 breqtrrdi φ n 1 st G n S
66 ffvelrn G : 0 2 n 0 G n 2
67 17 53 66 syl2an φ n G n 2
68 xp1st G n 2 1 st G n
69 67 68 syl φ n 1 st G n
70 14 adantr φ n S
71 ltletr F n 1 st G n S F n < 1 st G n 1 st G n S F n < S
72 25 69 70 71 syl3anc φ n F n < 1 st G n 1 st G n S F n < S
73 65 72 mpan2d φ n F n < 1 st G n F n < S
74 fvco3 G : 0 2 k 0 1 st G k = 1 st G k
75 56 74 sylan φ n k 0 1 st G k = 1 st G k
76 56 ffvelrnda φ n k 0 G k 2
77 xp1st G k 2 1 st G k
78 76 77 syl φ n k 0 1 st G k
79 xp2nd G n 2 2 nd G n
80 67 79 syl φ n 2 nd G n
81 80 adantr φ n k 0 2 nd G n
82 15 adantr φ n k 0 F :
83 16 adantr φ n k 0 D = x 2 , y 1 st x + 2 nd x 2 / m if m < y 1 st x m m + 2 nd x 2 2 nd x
84 simpr φ n k 0 k 0
85 60 adantr φ n k 0 n 0
86 82 83 3 4 84 85 ruclem10 φ n k 0 1 st G k < 2 nd G n
87 78 81 86 ltled φ n k 0 1 st G k 2 nd G n
88 75 87 eqbrtrd φ n k 0 1 st G k 2 nd G n
89 88 ralrimiva φ n k 0 1 st G k 2 nd G n
90 breq1 z = 1 st G k z 2 nd G n 1 st G k 2 nd G n
91 90 ralrn 1 st G Fn 0 z ran 1 st G z 2 nd G n k 0 1 st G k 2 nd G n
92 59 91 syl φ n z ran 1 st G z 2 nd G n k 0 1 st G k 2 nd G n
93 89 92 mpbird φ n z ran 1 st G z 2 nd G n
94 suprleub ran 1 st G ran 1 st G n z ran 1 st G z n 2 nd G n sup ran 1 st G < 2 nd G n z ran 1 st G z 2 nd G n
95 50 51 52 80 94 syl31anc φ n sup ran 1 st G < 2 nd G n z ran 1 st G z 2 nd G n
96 93 95 mpbird φ n sup ran 1 st G < 2 nd G n
97 5 96 eqbrtrid φ n S 2 nd G n
98 lelttr S 2 nd G n F n S 2 nd G n 2 nd G n < F n S < F n
99 70 80 25 98 syl3anc φ n S 2 nd G n 2 nd G n < F n S < F n
100 97 99 mpand φ n 2 nd G n < F n S < F n
101 73 100 orim12d φ n F n < 1 st G n 2 nd G n < F n F n < S S < F n
102 49 101 mpd φ n F n < S S < F n
103 25 70 lttri2d φ n F n S F n < S S < F n
104 102 103 mpbird φ n F n S
105 104 neneqd φ n ¬ F n = S
106 105 nrexdv φ ¬ n F n = S
107 risset S ran F z ran F z = S
108 ffn F : F Fn
109 eqeq1 z = F n z = S F n = S
110 109 rexrn F Fn z ran F z = S n F n = S
111 1 108 110 3syl φ z ran F z = S n F n = S
112 107 111 syl5bb φ S ran F n F n = S
113 106 112 mtbird φ ¬ S ran F
114 14 113 eldifd φ S ran F