| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ruc.1 |
|- ( ph -> F : NN --> RR ) |
| 2 |
|
ruc.2 |
|- ( ph -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 3 |
|
ruc.4 |
|- C = ( { <. 0 , <. 0 , 1 >. >. } u. F ) |
| 4 |
|
ruc.5 |
|- G = seq 0 ( D , C ) |
| 5 |
|
ruc.6 |
|- S = sup ( ran ( 1st o. G ) , RR , < ) |
| 6 |
1 2 3 4
|
ruclem11 |
|- ( ph -> ( ran ( 1st o. G ) C_ RR /\ ran ( 1st o. G ) =/= (/) /\ A. z e. ran ( 1st o. G ) z <_ 1 ) ) |
| 7 |
6
|
simp1d |
|- ( ph -> ran ( 1st o. G ) C_ RR ) |
| 8 |
6
|
simp2d |
|- ( ph -> ran ( 1st o. G ) =/= (/) ) |
| 9 |
|
1re |
|- 1 e. RR |
| 10 |
6
|
simp3d |
|- ( ph -> A. z e. ran ( 1st o. G ) z <_ 1 ) |
| 11 |
|
brralrspcev |
|- ( ( 1 e. RR /\ A. z e. ran ( 1st o. G ) z <_ 1 ) -> E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) |
| 12 |
9 10 11
|
sylancr |
|- ( ph -> E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) |
| 13 |
7 8 12
|
suprcld |
|- ( ph -> sup ( ran ( 1st o. G ) , RR , < ) e. RR ) |
| 14 |
5 13
|
eqeltrid |
|- ( ph -> S e. RR ) |
| 15 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : NN --> RR ) |
| 16 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 17 |
1 2 3 4
|
ruclem6 |
|- ( ph -> G : NN0 --> ( RR X. RR ) ) |
| 18 |
|
nnm1nn0 |
|- ( n e. NN -> ( n - 1 ) e. NN0 ) |
| 19 |
|
ffvelcdm |
|- ( ( G : NN0 --> ( RR X. RR ) /\ ( n - 1 ) e. NN0 ) -> ( G ` ( n - 1 ) ) e. ( RR X. RR ) ) |
| 20 |
17 18 19
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( G ` ( n - 1 ) ) e. ( RR X. RR ) ) |
| 21 |
|
xp1st |
|- ( ( G ` ( n - 1 ) ) e. ( RR X. RR ) -> ( 1st ` ( G ` ( n - 1 ) ) ) e. RR ) |
| 22 |
20 21
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` ( n - 1 ) ) ) e. RR ) |
| 23 |
|
xp2nd |
|- ( ( G ` ( n - 1 ) ) e. ( RR X. RR ) -> ( 2nd ` ( G ` ( n - 1 ) ) ) e. RR ) |
| 24 |
20 23
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` ( n - 1 ) ) ) e. RR ) |
| 25 |
1
|
ffvelcdmda |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) e. RR ) |
| 26 |
|
eqid |
|- ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) = ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
| 27 |
|
eqid |
|- ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) = ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
| 28 |
1 2 3 4
|
ruclem8 |
|- ( ( ph /\ ( n - 1 ) e. NN0 ) -> ( 1st ` ( G ` ( n - 1 ) ) ) < ( 2nd ` ( G ` ( n - 1 ) ) ) ) |
| 29 |
18 28
|
sylan2 |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` ( n - 1 ) ) ) < ( 2nd ` ( G ` ( n - 1 ) ) ) ) |
| 30 |
15 16 22 24 25 26 27 29
|
ruclem3 |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) \/ ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) < ( F ` n ) ) ) |
| 31 |
1 2 3 4
|
ruclem7 |
|- ( ( ph /\ ( n - 1 ) e. NN0 ) -> ( G ` ( ( n - 1 ) + 1 ) ) = ( ( G ` ( n - 1 ) ) D ( F ` ( ( n - 1 ) + 1 ) ) ) ) |
| 32 |
18 31
|
sylan2 |
|- ( ( ph /\ n e. NN ) -> ( G ` ( ( n - 1 ) + 1 ) ) = ( ( G ` ( n - 1 ) ) D ( F ` ( ( n - 1 ) + 1 ) ) ) ) |
| 33 |
|
nncn |
|- ( n e. NN -> n e. CC ) |
| 34 |
33
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. CC ) |
| 35 |
|
ax-1cn |
|- 1 e. CC |
| 36 |
|
npcan |
|- ( ( n e. CC /\ 1 e. CC ) -> ( ( n - 1 ) + 1 ) = n ) |
| 37 |
34 35 36
|
sylancl |
|- ( ( ph /\ n e. NN ) -> ( ( n - 1 ) + 1 ) = n ) |
| 38 |
37
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( G ` ( ( n - 1 ) + 1 ) ) = ( G ` n ) ) |
| 39 |
|
1st2nd2 |
|- ( ( G ` ( n - 1 ) ) e. ( RR X. RR ) -> ( G ` ( n - 1 ) ) = <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. ) |
| 40 |
20 39
|
syl |
|- ( ( ph /\ n e. NN ) -> ( G ` ( n - 1 ) ) = <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. ) |
| 41 |
37
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( F ` ( ( n - 1 ) + 1 ) ) = ( F ` n ) ) |
| 42 |
40 41
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( G ` ( n - 1 ) ) D ( F ` ( ( n - 1 ) + 1 ) ) ) = ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
| 43 |
32 38 42
|
3eqtr3d |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) = ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) |
| 44 |
43
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) = ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) ) |
| 45 |
44
|
breq2d |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( G ` n ) ) <-> ( F ` n ) < ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) ) ) |
| 46 |
43
|
fveq2d |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) = ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) ) |
| 47 |
46
|
breq1d |
|- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) < ( F ` n ) <-> ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) < ( F ` n ) ) ) |
| 48 |
45 47
|
orbi12d |
|- ( ( ph /\ n e. NN ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) \/ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) <-> ( ( F ` n ) < ( 1st ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) \/ ( 2nd ` ( <. ( 1st ` ( G ` ( n - 1 ) ) ) , ( 2nd ` ( G ` ( n - 1 ) ) ) >. D ( F ` n ) ) ) < ( F ` n ) ) ) ) |
| 49 |
30 48
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( G ` n ) ) \/ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) ) |
| 50 |
7
|
adantr |
|- ( ( ph /\ n e. NN ) -> ran ( 1st o. G ) C_ RR ) |
| 51 |
8
|
adantr |
|- ( ( ph /\ n e. NN ) -> ran ( 1st o. G ) =/= (/) ) |
| 52 |
12
|
adantr |
|- ( ( ph /\ n e. NN ) -> E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) |
| 53 |
|
nnnn0 |
|- ( n e. NN -> n e. NN0 ) |
| 54 |
|
fvco3 |
|- ( ( G : NN0 --> ( RR X. RR ) /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
| 55 |
17 53 54
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( ( 1st o. G ) ` n ) = ( 1st ` ( G ` n ) ) ) |
| 56 |
17
|
adantr |
|- ( ( ph /\ n e. NN ) -> G : NN0 --> ( RR X. RR ) ) |
| 57 |
|
1stcof |
|- ( G : NN0 --> ( RR X. RR ) -> ( 1st o. G ) : NN0 --> RR ) |
| 58 |
|
ffn |
|- ( ( 1st o. G ) : NN0 --> RR -> ( 1st o. G ) Fn NN0 ) |
| 59 |
56 57 58
|
3syl |
|- ( ( ph /\ n e. NN ) -> ( 1st o. G ) Fn NN0 ) |
| 60 |
53
|
adantl |
|- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
| 61 |
|
fnfvelrn |
|- ( ( ( 1st o. G ) Fn NN0 /\ n e. NN0 ) -> ( ( 1st o. G ) ` n ) e. ran ( 1st o. G ) ) |
| 62 |
59 60 61
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( ( 1st o. G ) ` n ) e. ran ( 1st o. G ) ) |
| 63 |
55 62
|
eqeltrrd |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. ran ( 1st o. G ) ) |
| 64 |
50 51 52 63
|
suprubd |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) <_ sup ( ran ( 1st o. G ) , RR , < ) ) |
| 65 |
64 5
|
breqtrrdi |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) <_ S ) |
| 66 |
|
ffvelcdm |
|- ( ( G : NN0 --> ( RR X. RR ) /\ n e. NN0 ) -> ( G ` n ) e. ( RR X. RR ) ) |
| 67 |
17 53 66
|
syl2an |
|- ( ( ph /\ n e. NN ) -> ( G ` n ) e. ( RR X. RR ) ) |
| 68 |
|
xp1st |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 1st ` ( G ` n ) ) e. RR ) |
| 69 |
67 68
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 1st ` ( G ` n ) ) e. RR ) |
| 70 |
14
|
adantr |
|- ( ( ph /\ n e. NN ) -> S e. RR ) |
| 71 |
|
ltletr |
|- ( ( ( F ` n ) e. RR /\ ( 1st ` ( G ` n ) ) e. RR /\ S e. RR ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ S ) -> ( F ` n ) < S ) ) |
| 72 |
25 69 70 71
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) /\ ( 1st ` ( G ` n ) ) <_ S ) -> ( F ` n ) < S ) ) |
| 73 |
65 72
|
mpan2d |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < ( 1st ` ( G ` n ) ) -> ( F ` n ) < S ) ) |
| 74 |
|
fvco3 |
|- ( ( G : NN0 --> ( RR X. RR ) /\ k e. NN0 ) -> ( ( 1st o. G ) ` k ) = ( 1st ` ( G ` k ) ) ) |
| 75 |
56 74
|
sylan |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( ( 1st o. G ) ` k ) = ( 1st ` ( G ` k ) ) ) |
| 76 |
56
|
ffvelcdmda |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( G ` k ) e. ( RR X. RR ) ) |
| 77 |
|
xp1st |
|- ( ( G ` k ) e. ( RR X. RR ) -> ( 1st ` ( G ` k ) ) e. RR ) |
| 78 |
76 77
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 1st ` ( G ` k ) ) e. RR ) |
| 79 |
|
xp2nd |
|- ( ( G ` n ) e. ( RR X. RR ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 80 |
67 79
|
syl |
|- ( ( ph /\ n e. NN ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 81 |
80
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 2nd ` ( G ` n ) ) e. RR ) |
| 82 |
15
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> F : NN --> RR ) |
| 83 |
16
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> D = ( x e. ( RR X. RR ) , y e. RR |-> [_ ( ( ( 1st ` x ) + ( 2nd ` x ) ) / 2 ) / m ]_ if ( m < y , <. ( 1st ` x ) , m >. , <. ( ( m + ( 2nd ` x ) ) / 2 ) , ( 2nd ` x ) >. ) ) ) |
| 84 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> k e. NN0 ) |
| 85 |
60
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> n e. NN0 ) |
| 86 |
82 83 3 4 84 85
|
ruclem10 |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 1st ` ( G ` k ) ) < ( 2nd ` ( G ` n ) ) ) |
| 87 |
78 81 86
|
ltled |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( 1st ` ( G ` k ) ) <_ ( 2nd ` ( G ` n ) ) ) |
| 88 |
75 87
|
eqbrtrd |
|- ( ( ( ph /\ n e. NN ) /\ k e. NN0 ) -> ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) |
| 89 |
88
|
ralrimiva |
|- ( ( ph /\ n e. NN ) -> A. k e. NN0 ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) |
| 90 |
|
breq1 |
|- ( z = ( ( 1st o. G ) ` k ) -> ( z <_ ( 2nd ` ( G ` n ) ) <-> ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) ) |
| 91 |
90
|
ralrn |
|- ( ( 1st o. G ) Fn NN0 -> ( A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) <-> A. k e. NN0 ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) ) |
| 92 |
59 91
|
syl |
|- ( ( ph /\ n e. NN ) -> ( A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) <-> A. k e. NN0 ( ( 1st o. G ) ` k ) <_ ( 2nd ` ( G ` n ) ) ) ) |
| 93 |
89 92
|
mpbird |
|- ( ( ph /\ n e. NN ) -> A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) ) |
| 94 |
|
suprleub |
|- ( ( ( ran ( 1st o. G ) C_ RR /\ ran ( 1st o. G ) =/= (/) /\ E. n e. RR A. z e. ran ( 1st o. G ) z <_ n ) /\ ( 2nd ` ( G ` n ) ) e. RR ) -> ( sup ( ran ( 1st o. G ) , RR , < ) <_ ( 2nd ` ( G ` n ) ) <-> A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) ) ) |
| 95 |
50 51 52 80 94
|
syl31anc |
|- ( ( ph /\ n e. NN ) -> ( sup ( ran ( 1st o. G ) , RR , < ) <_ ( 2nd ` ( G ` n ) ) <-> A. z e. ran ( 1st o. G ) z <_ ( 2nd ` ( G ` n ) ) ) ) |
| 96 |
93 95
|
mpbird |
|- ( ( ph /\ n e. NN ) -> sup ( ran ( 1st o. G ) , RR , < ) <_ ( 2nd ` ( G ` n ) ) ) |
| 97 |
5 96
|
eqbrtrid |
|- ( ( ph /\ n e. NN ) -> S <_ ( 2nd ` ( G ` n ) ) ) |
| 98 |
|
lelttr |
|- ( ( S e. RR /\ ( 2nd ` ( G ` n ) ) e. RR /\ ( F ` n ) e. RR ) -> ( ( S <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) -> S < ( F ` n ) ) ) |
| 99 |
70 80 25 98
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( ( S <_ ( 2nd ` ( G ` n ) ) /\ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) -> S < ( F ` n ) ) ) |
| 100 |
97 99
|
mpand |
|- ( ( ph /\ n e. NN ) -> ( ( 2nd ` ( G ` n ) ) < ( F ` n ) -> S < ( F ` n ) ) ) |
| 101 |
73 100
|
orim12d |
|- ( ( ph /\ n e. NN ) -> ( ( ( F ` n ) < ( 1st ` ( G ` n ) ) \/ ( 2nd ` ( G ` n ) ) < ( F ` n ) ) -> ( ( F ` n ) < S \/ S < ( F ` n ) ) ) ) |
| 102 |
49 101
|
mpd |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) < S \/ S < ( F ` n ) ) ) |
| 103 |
25 70
|
lttri2d |
|- ( ( ph /\ n e. NN ) -> ( ( F ` n ) =/= S <-> ( ( F ` n ) < S \/ S < ( F ` n ) ) ) ) |
| 104 |
102 103
|
mpbird |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) =/= S ) |
| 105 |
104
|
neneqd |
|- ( ( ph /\ n e. NN ) -> -. ( F ` n ) = S ) |
| 106 |
105
|
nrexdv |
|- ( ph -> -. E. n e. NN ( F ` n ) = S ) |
| 107 |
|
risset |
|- ( S e. ran F <-> E. z e. ran F z = S ) |
| 108 |
|
ffn |
|- ( F : NN --> RR -> F Fn NN ) |
| 109 |
|
eqeq1 |
|- ( z = ( F ` n ) -> ( z = S <-> ( F ` n ) = S ) ) |
| 110 |
109
|
rexrn |
|- ( F Fn NN -> ( E. z e. ran F z = S <-> E. n e. NN ( F ` n ) = S ) ) |
| 111 |
1 108 110
|
3syl |
|- ( ph -> ( E. z e. ran F z = S <-> E. n e. NN ( F ` n ) = S ) ) |
| 112 |
107 111
|
bitrid |
|- ( ph -> ( S e. ran F <-> E. n e. NN ( F ` n ) = S ) ) |
| 113 |
106 112
|
mtbird |
|- ( ph -> -. S e. ran F ) |
| 114 |
14 113
|
eldifd |
|- ( ph -> S e. ( RR \ ran F ) ) |