Metamath Proof Explorer


Theorem rusgr0edg

Description: Special case for graphs without edges: There are no walks of length greater than 0. (Contributed by Alexander van der Vekens, 26-Jul-2018) (Revised by AV, 7-May-2021)

Ref Expression
Hypotheses rusgrnumwwlk.v V=VtxG
rusgrnumwwlk.l L=vV,n0wnWWalksNG|w0=v
Assertion rusgr0edg GRegUSGraph0PVNPLN=0

Proof

Step Hyp Ref Expression
1 rusgrnumwwlk.v V=VtxG
2 rusgrnumwwlk.l L=vV,n0wnWWalksNG|w0=v
3 simp2 GRegUSGraph0PVNPV
4 nnnn0 NN0
5 4 3ad2ant3 GRegUSGraph0PVNN0
6 1 2 rusgrnumwwlklem PVN0PLN=wNWWalksNG|w0=P
7 3 5 6 syl2anc GRegUSGraph0PVNPLN=wNWWalksNG|w0=P
8 rusgrusgr GRegUSGraph0GUSGraph
9 usgr0edg0rusgr GUSGraphGRegUSGraph0EdgG=
10 9 biimpcd GRegUSGraph0GUSGraphEdgG=
11 8 10 mpd GRegUSGraph0EdgG=
12 0enwwlksnge1 EdgG=NNWWalksNG=
13 11 12 sylan GRegUSGraph0NNWWalksNG=
14 eleq2 NWWalksNG=wNWWalksNGw
15 noel ¬w
16 15 pm2.21i w¬w0=P
17 14 16 syl6bi NWWalksNG=wNWWalksNG¬w0=P
18 13 17 syl GRegUSGraph0NwNWWalksNG¬w0=P
19 18 3adant2 GRegUSGraph0PVNwNWWalksNG¬w0=P
20 19 ralrimiv GRegUSGraph0PVNwNWWalksNG¬w0=P
21 rabeq0 wNWWalksNG|w0=P=wNWWalksNG¬w0=P
22 20 21 sylibr GRegUSGraph0PVNwNWWalksNG|w0=P=
23 22 fveq2d GRegUSGraph0PVNwNWWalksNG|w0=P=
24 hash0 =0
25 23 24 eqtrdi GRegUSGraph0PVNwNWWalksNG|w0=P=0
26 7 25 eqtrd GRegUSGraph0PVNPLN=0