Metamath Proof Explorer


Theorem rzgrp

Description: The quotient group RR / ZZ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020)

Ref Expression
Hypothesis rzgrp.r R=fld/𝑠fld~QG
Assertion rzgrp RGrp

Proof

Step Hyp Ref Expression
1 rzgrp.r R=fld/𝑠fld~QG
2 zsubrg SubRingfld
3 zssre
4 resubdrg SubRingfldfldDivRing
5 4 simpli SubRingfld
6 df-refld fld=fld𝑠
7 6 subsubrg SubRingfldSubRingfldSubRingfld
8 5 7 ax-mp SubRingfldSubRingfld
9 2 3 8 mpbir2an SubRingfld
10 subrgsubg SubRingfldSubGrpfld
11 9 10 ax-mp SubGrpfld
12 simpl xyx
13 12 recnd xyx
14 simpr xyy
15 14 recnd xyy
16 13 15 addcomd xyx+y=y+x
17 16 eleq1d xyx+yy+x
18 17 rgen2 xyx+yy+x
19 rebase =Basefld
20 replusg +=+fld
21 19 20 isnsg NrmSGrpfldSubGrpfldxyx+yy+x
22 11 18 21 mpbir2an NrmSGrpfld
23 1 qusgrp NrmSGrpfldRGrp
24 22 23 ax-mp RGrp