Description: The quotient group RR / ZZ is a group. (Contributed by Thierry Arnoux, 26-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Hypothesis | rzgrp.r | |
|
Assertion | rzgrp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rzgrp.r | |
|
2 | zsubrg | |
|
3 | zssre | |
|
4 | resubdrg | |
|
5 | 4 | simpli | |
6 | df-refld | |
|
7 | 6 | subsubrg | |
8 | 5 7 | ax-mp | |
9 | 2 3 8 | mpbir2an | |
10 | subrgsubg | |
|
11 | 9 10 | ax-mp | |
12 | simpl | |
|
13 | 12 | recnd | |
14 | simpr | |
|
15 | 14 | recnd | |
16 | 13 15 | addcomd | |
17 | 16 | eleq1d | |
18 | 17 | rgen2 | |
19 | rebase | |
|
20 | replusg | |
|
21 | 19 20 | isnsg | |
22 | 11 18 21 | mpbir2an | |
23 | 1 | qusgrp | |
24 | 22 23 | ax-mp | |