Metamath Proof Explorer


Theorem s4dom

Description: The domain of a length 4 word is the union of two (disjunct) pairs. (Contributed by Alexander van der Vekens, 15-Aug-2017)

Ref Expression
Assertion s4dom ASBSCSDSE=⟨“ABCD”⟩domE=0123

Proof

Step Hyp Ref Expression
1 dmeq E=⟨“ABCD”⟩domE=dom⟨“ABCD”⟩
2 s4prop ASBSCSDS⟨“ABCD”⟩=0A1B2C3D
3 2 dmeqd ASBSCSDSdom⟨“ABCD”⟩=dom0A1B2C3D
4 dmun dom0A1B2C3D=dom0A1Bdom2C3D
5 dmpropg ASBSdom0A1B=01
6 5 adantr ASBSCSDSdom0A1B=01
7 dmpropg CSDSdom2C3D=23
8 7 adantl ASBSCSDSdom2C3D=23
9 6 8 uneq12d ASBSCSDSdom0A1Bdom2C3D=0123
10 4 9 eqtrid ASBSCSDSdom0A1B2C3D=0123
11 3 10 eqtrd ASBSCSDSdom⟨“ABCD”⟩=0123
12 1 11 sylan9eqr ASBSCSDSE=⟨“ABCD”⟩domE=0123
13 12 ex ASBSCSDSE=⟨“ABCD”⟩domE=0123