Metamath Proof Explorer


Theorem sacgr

Description: Supplementary angles of congruent angles are themselves congruent. Theorem 11.13 of Schwabhauser p. 98. (Contributed by Thierry Arnoux, 30-Sep-2020) (Proof shortened by Igor Ieskov, 16-Feb-2023)

Ref Expression
Hypotheses dfcgra2.p P=BaseG
dfcgra2.i I=ItvG
dfcgra2.m -˙=distG
dfcgra2.g φG𝒢Tarski
dfcgra2.a φAP
dfcgra2.b φBP
dfcgra2.c φCP
dfcgra2.d φDP
dfcgra2.e φEP
dfcgra2.f φFP
sacgr.x φXP
sacgr.y φYP
sacgr.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
sacgr.2 φBAIX
sacgr.3 φEDIY
sacgr.4 φBX
sacgr.5 φEY
Assertion sacgr φ⟨“XBC”⟩𝒢G⟨“YEF”⟩

Proof

Step Hyp Ref Expression
1 dfcgra2.p P=BaseG
2 dfcgra2.i I=ItvG
3 dfcgra2.m -˙=distG
4 dfcgra2.g φG𝒢Tarski
5 dfcgra2.a φAP
6 dfcgra2.b φBP
7 dfcgra2.c φCP
8 dfcgra2.d φDP
9 dfcgra2.e φEP
10 dfcgra2.f φFP
11 sacgr.x φXP
12 sacgr.y φYP
13 sacgr.1 φ⟨“ABC”⟩𝒢G⟨“DEF”⟩
14 sacgr.2 φBAIX
15 sacgr.3 φEDIY
16 sacgr.4 φBX
17 sacgr.5 φEY
18 eqid hl𝒢G=hl𝒢G
19 4 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFG𝒢Tarski
20 11 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFXP
21 6 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFBP
22 7 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFCP
23 12 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFYP
24 9 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFEP
25 10 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFFP
26 eqid Line𝒢G=Line𝒢G
27 eqid pInv𝒢G=pInv𝒢G
28 eqid pInv𝒢GE=pInv𝒢GE
29 simpllr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFxP
30 1 3 2 26 27 19 24 28 29 mircl φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFpInv𝒢GExP
31 simplr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFyP
32 eqid pInv𝒢GB=pInv𝒢GB
33 1 3 2 26 27 4 6 32 11 mirmir φpInv𝒢GBpInv𝒢GBX=X
34 eqidd φB=B
35 eqidd φC=C
36 33 34 35 s3eqd φ⟨“pInv𝒢GBpInv𝒢GBXBC”⟩=⟨“XBC”⟩
37 36 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEF⟨“pInv𝒢GBpInv𝒢GBXBC”⟩=⟨“XBC”⟩
38 eqid 𝒢G=𝒢G
39 1 3 2 26 27 4 6 32 11 mircl φpInv𝒢GBXP
40 39 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFpInv𝒢GBXP
41 16 necomd φXB
42 1 3 2 26 27 4 6 32 11 41 mirne φpInv𝒢GBXB
43 42 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFpInv𝒢GBXB
44 simpr1 φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEF⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩
45 1 3 2 26 27 19 38 32 28 40 21 29 24 22 31 43 44 mirtrcgr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEF⟨“pInv𝒢GBpInv𝒢GBXBC”⟩𝒢G⟨“pInv𝒢GExEy”⟩
46 37 45 eqbrtrrd φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEF⟨“XBC”⟩𝒢G⟨“pInv𝒢GExEy”⟩
47 17 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFEY
48 47 necomd φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFYE
49 8 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFDP
50 simpr2 φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFxhl𝒢GED
51 1 2 18 29 49 24 19 50 hlne1 φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFxE
52 1 3 2 26 27 19 24 28 29 51 mirne φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFpInv𝒢GExE
53 1 2 18 29 49 24 19 50 hlcomd φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFDhl𝒢GEx
54 15 ad3antrrr φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFEDIY
55 1 2 18 49 29 23 19 24 53 54 btwnhl φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFExIY
56 1 3 2 19 29 24 23 55 tgbtwncom φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFEYIx
57 1 3 2 26 27 19 24 28 29 mirmir φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFpInv𝒢GEpInv𝒢GEx=x
58 57 oveq2d φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFYIpInv𝒢GEpInv𝒢GEx=YIx
59 56 58 eleqtrrd φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFEYIpInv𝒢GEpInv𝒢GEx
60 1 3 2 26 27 19 28 18 24 23 30 24 48 52 59 mirhl2 φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFYhl𝒢GEpInv𝒢GEx
61 1 2 18 23 30 24 19 60 hlcomd φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFpInv𝒢GExhl𝒢GEY
62 simpr3 φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEFyhl𝒢GEF
63 1 2 18 19 20 21 22 23 24 25 30 31 46 61 62 iscgrad φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEF⟨“XBC”⟩𝒢G⟨“YEF”⟩
64 1 2 18 4 5 6 7 8 9 10 13 cgrane2 φBC
65 1 2 4 18 39 6 7 42 64 cgraid φ⟨“pInv𝒢GBXBC”⟩𝒢G⟨“pInv𝒢GBXBC”⟩
66 1 2 18 4 5 6 7 8 9 10 13 cgrane1 φAB
67 33 oveq2d φAIpInv𝒢GBpInv𝒢GBX=AIX
68 14 67 eleqtrrd φBAIpInv𝒢GBpInv𝒢GBX
69 1 3 2 26 27 4 32 18 6 5 39 5 66 42 68 mirhl2 φAhl𝒢GBpInv𝒢GBX
70 1 2 18 4 39 6 7 39 6 7 65 5 69 cgrahl1 φ⟨“pInv𝒢GBXBC”⟩𝒢G⟨“ABC”⟩
71 1 2 4 18 39 6 7 5 6 7 70 8 9 10 13 cgratr φ⟨“pInv𝒢GBXBC”⟩𝒢G⟨“DEF”⟩
72 1 2 18 4 39 6 7 8 9 10 iscgra φ⟨“pInv𝒢GBXBC”⟩𝒢G⟨“DEF”⟩xPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEF
73 71 72 mpbid φxPyP⟨“pInv𝒢GBXBC”⟩𝒢G⟨“xEy”⟩xhl𝒢GEDyhl𝒢GEF
74 63 73 r19.29vva φ⟨“XBC”⟩𝒢G⟨“YEF”⟩