Metamath Proof Explorer


Theorem satf0n0

Description: The value of the satisfaction predicate as function over wff codes in the empty model and the empty binary relation does not contain the empty set. (Contributed by AV, 19-Sep-2023)

Ref Expression
Assertion satf0n0 NωSatN

Proof

Step Hyp Ref Expression
1 fveq2 x=Satx=Sat
2 1 eleq2d x=SatxSat
3 2 notbid x=¬Satx¬Sat
4 fveq2 x=ySatx=Saty
5 4 eleq2d x=ySatxSaty
6 5 notbid x=y¬Satx¬Saty
7 fveq2 x=sucySatx=Satsucy
8 7 eleq2d x=sucySatxSatsucy
9 8 notbid x=sucy¬Satx¬Satsucy
10 fveq2 x=NSatx=SatN
11 10 eleq2d x=NSatxSatN
12 11 notbid x=N¬Satx¬SatN
13 0nelopab ¬xy|y=iωjωx=i𝑔j
14 satf00 Sat=xy|y=iωjωx=i𝑔j
15 14 eleq2i Satxy|y=iωjωx=i𝑔j
16 13 15 mtbir ¬Sat
17 simpr yω¬Saty¬Saty
18 0nelopab ¬xz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
19 ioran ¬Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu¬Saty¬xz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
20 17 18 19 sylanblrc yω¬Saty¬Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
21 eqid Sat=Sat
22 21 satf0suc yωSatsucy=Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
23 22 adantr yω¬SatySatsucy=Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
24 23 eleq2d yω¬SatySatsucySatyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
25 elun Satyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stuSatyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
26 24 25 bitrdi yω¬SatySatsucySatyxz|z=uSatyvSatyx=1stu𝑔1stviωx=𝑔i1stu
27 20 26 mtbird yω¬Saty¬Satsucy
28 27 ex yω¬Saty¬Satsucy
29 3 6 9 12 16 28 finds Nω¬SatN
30 df-nel SatN¬SatN
31 29 30 sylibr NωSatN