Metamath Proof Explorer


Theorem sbal1

Description: Check out sbal for a version not dependent on ax-13 . A theorem used in elimination of disjoint variable restriction on x and z by replacing it with a distinctor -. A. x x = z . (Contributed by NM, 15-May-1993) (Proof shortened by Wolf Lammen, 3-Oct-2018) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Assertion sbal1 ¬xx=zzyxφxzyφ

Proof

Step Hyp Ref Expression
1 sb4b ¬yy=zzyxφyy=zxφ
2 nfnae y¬xx=z
3 nfeqf2 ¬xx=zxy=z
4 19.21t xy=zxy=zφy=zxφ
5 4 bicomd xy=zy=zxφxy=zφ
6 3 5 syl ¬xx=zy=zxφxy=zφ
7 2 6 albid ¬xx=zyy=zxφyxy=zφ
8 1 7 sylan9bbr ¬xx=z¬yy=zzyxφyxy=zφ
9 nfnae x¬yy=z
10 sb4b ¬yy=zzyφyy=zφ
11 9 10 albid ¬yy=zxzyφxyy=zφ
12 alcom xyy=zφyxy=zφ
13 11 12 bitrdi ¬yy=zxzyφyxy=zφ
14 13 adantl ¬xx=z¬yy=zxzyφyxy=zφ
15 8 14 bitr4d ¬xx=z¬yy=zzyxφxzyφ
16 15 ex ¬xx=z¬yy=zzyxφxzyφ
17 sbequ12 y=zxφzyxφ
18 17 sps yy=zxφzyxφ
19 sbequ12 y=zφzyφ
20 19 sps yy=zφzyφ
21 20 dral2 yy=zxφxzyφ
22 18 21 bitr3d yy=zzyxφxzyφ
23 16 22 pm2.61d2 ¬xx=zzyxφxzyφ