Description: Lemma for sbth . (Contributed by NM, 22-Mar-1998)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sbthlem.1 | |
|
sbthlem.2 | |
||
sbthlem.3 | |
||
Assertion | sbthlem5 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbthlem.1 | |
|
2 | sbthlem.2 | |
|
3 | sbthlem.3 | |
|
4 | 3 | dmeqi | |
5 | dmun | |
|
6 | dmres | |
|
7 | dmres | |
|
8 | df-rn | |
|
9 | 8 | eqcomi | |
10 | 9 | ineq2i | |
11 | 7 10 | eqtri | |
12 | 6 11 | uneq12i | |
13 | 5 12 | eqtri | |
14 | 4 13 | eqtri | |
15 | 1 2 | sbthlem1 | |
16 | difss | |
|
17 | 15 16 | sstri | |
18 | sseq2 | |
|
19 | 17 18 | mpbiri | |
20 | dfss | |
|
21 | 19 20 | sylib | |
22 | 21 | uneq1d | |
23 | 1 2 | sbthlem3 | |
24 | imassrn | |
|
25 | 23 24 | eqsstrrdi | |
26 | dfss | |
|
27 | 25 26 | sylib | |
28 | 27 | uneq2d | |
29 | 22 28 | sylan9eq | |
30 | 14 29 | eqtr4id | |
31 | undif | |
|
32 | 17 31 | mpbi | |
33 | 30 32 | eqtrdi | |