Metamath Proof Explorer


Theorem sbthlem9

Description: Lemma for sbth . (Contributed by NM, 28-Mar-1998)

Ref Expression
Hypotheses sbthlem.1 AV
sbthlem.2 D=x|xAgBfxAx
sbthlem.3 H=fDg-1AD
Assertion sbthlem9 f:A1-1Bg:B1-1AH:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 sbthlem.1 AV
2 sbthlem.2 D=x|xAgBfxAx
3 sbthlem.3 H=fDg-1AD
4 1 2 3 sbthlem7 FunfFung-1FunH
5 1 2 3 sbthlem5 domf=ArangAdomH=A
6 5 adantrl domf=AFungdomg=BrangAdomH=A
7 4 6 anim12i FunfFung-1domf=AFungdomg=BrangAFunHdomH=A
8 7 an42s Funfdomf=AFungdomg=BrangAFung-1FunHdomH=A
9 8 adantlr Funfdomf=AranfBFungdomg=BrangAFung-1FunHdomH=A
10 9 adantlr Funfdomf=AranfBFunf-1Fungdomg=BrangAFung-1FunHdomH=A
11 1 2 3 sbthlem8 Funf-1Fungdomg=BrangAFung-1FunH-1
12 11 adantll Funfdomf=AranfBFunf-1Fungdomg=BrangAFung-1FunH-1
13 simpr Fungdomg=Bdomg=B
14 13 anim1i Fungdomg=BrangAdomg=BrangA
15 df-rn ranH=domH-1
16 1 2 3 sbthlem6 ranfBdomg=BrangAFung-1ranH=B
17 15 16 eqtr3id ranfBdomg=BrangAFung-1domH-1=B
18 14 17 sylanr1 ranfBFungdomg=BrangAFung-1domH-1=B
19 18 adantll Funfdomf=AranfBFungdomg=BrangAFung-1domH-1=B
20 19 adantlr Funfdomf=AranfBFunf-1Fungdomg=BrangAFung-1domH-1=B
21 10 12 20 jca32 Funfdomf=AranfBFunf-1Fungdomg=BrangAFung-1FunHdomH=AFunH-1domH-1=B
22 df-f1 f:A1-1Bf:ABFunf-1
23 df-f f:ABfFnAranfB
24 df-fn fFnAFunfdomf=A
25 24 anbi1i fFnAranfBFunfdomf=AranfB
26 23 25 bitri f:ABFunfdomf=AranfB
27 26 anbi1i f:ABFunf-1Funfdomf=AranfBFunf-1
28 22 27 bitri f:A1-1BFunfdomf=AranfBFunf-1
29 df-f1 g:B1-1Ag:BAFung-1
30 df-f g:BAgFnBrangA
31 df-fn gFnBFungdomg=B
32 31 anbi1i gFnBrangAFungdomg=BrangA
33 30 32 bitri g:BAFungdomg=BrangA
34 33 anbi1i g:BAFung-1Fungdomg=BrangAFung-1
35 29 34 bitri g:B1-1AFungdomg=BrangAFung-1
36 28 35 anbi12i f:A1-1Bg:B1-1AFunfdomf=AranfBFunf-1Fungdomg=BrangAFung-1
37 dff1o4 H:A1-1 ontoBHFnAH-1FnB
38 df-fn HFnAFunHdomH=A
39 df-fn H-1FnBFunH-1domH-1=B
40 38 39 anbi12i HFnAH-1FnBFunHdomH=AFunH-1domH-1=B
41 37 40 bitri H:A1-1 ontoBFunHdomH=AFunH-1domH-1=B
42 21 36 41 3imtr4i f:A1-1Bg:B1-1AH:A1-1 ontoB