Metamath Proof Explorer


Theorem scottelrankd

Description: Property of a Scott's trick set. (Contributed by Rohan Ridenour, 11-Aug-2023)

Ref Expression
Hypotheses scottelrankd.1 φBScottA
scottelrankd.2 φCScottA
Assertion scottelrankd φrankBrankC

Proof

Step Hyp Ref Expression
1 scottelrankd.1 φBScottA
2 scottelrankd.2 φCScottA
3 fveq2 y=Cranky=rankC
4 3 sseq2d y=CrankBrankyrankBrankC
5 df-scott ScottA=xA|yArankxranky
6 1 5 eleqtrdi φBxA|yArankxranky
7 fveq2 x=Brankx=rankB
8 7 sseq1d x=BrankxrankyrankBranky
9 8 ralbidv x=ByArankxrankyyArankBranky
10 9 elrab BxA|yArankxrankyBAyArankBranky
11 6 10 sylib φBAyArankBranky
12 11 simprd φyArankBranky
13 2 5 eleqtrdi φCxA|yArankxranky
14 elrabi CxA|yArankxrankyCA
15 13 14 syl φCA
16 4 12 15 rspcdva φrankBrankC