Metamath Proof Explorer


Theorem sdomdomtrfi

Description: Transitivity of strict dominance and dominance when A is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr ). (Contributed by BTernaryTau, 25-Nov-2024)

Ref Expression
Assertion sdomdomtrfi A Fin A B B C A C

Proof

Step Hyp Ref Expression
1 sdomdom A B A B
2 domtrfil A Fin A B B C A C
3 1 2 syl3an2 A Fin A B B C A C
4 simp1 A Fin B C A C A Fin
5 ensymfib A Fin A C C A
6 5 biimpa A Fin A C C A
7 6 3adant2 A Fin B C A C C A
8 endom C A C A
9 domtrfir A Fin B C C A B A
10 8 9 syl3an3 A Fin B C C A B A
11 7 10 syld3an3 A Fin B C A C B A
12 domfi A Fin B A B Fin
13 domnsymfi B Fin B A ¬ A B
14 12 13 sylancom A Fin B A ¬ A B
15 4 11 14 syl2anc A Fin B C A C ¬ A B
16 15 3expia A Fin B C A C ¬ A B
17 16 con2d A Fin B C A B ¬ A C
18 17 3impia A Fin B C A B ¬ A C
19 18 3com23 A Fin A B B C ¬ A C
20 brsdom A C A C ¬ A C
21 3 19 20 sylanbrc A Fin A B B C A C